Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
Page(s) 539 - 546
DOI https://doi.org/10.1051/wujns/2024296539
Published online 07 January 2025
  1. Shapiro A, Dentcheva D, Ruszczyński A. Lectures on Stochastic Programming: Modeling and Theory[M]. Third Edition. Philadelphia: Society for Industrial and Applied Mathematics, 2009. [CrossRef] [Google Scholar]
  2. Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York: Springer-Verlag, 2003. [Google Scholar]
  3. Luo Z Q, Pang J S, Ralph D. Mathematical Programs with Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996. [CrossRef] [Google Scholar]
  4. Luo M J, Lin G H. Expected residual minimization method for stochastic variational inequality problems[J]. Journal of Optimization Theory and Applications, 2009, 140(1): 103-116. [Google Scholar]
  5. Luo M J, Lin G H. Convergence results of the ERM method for nonlinear stochastic variational inequality problems[J]. Journal of Optimization Theory and Applications, 2009, 142(3): 569-581. [Google Scholar]
  6. Chen X J, Fukushima M. Expected residual minimization method for stochastic linear complementarity problems[J]. Mathematics of Operations Research, 2005, 30(4): 1022-1038. [CrossRef] [MathSciNet] [Google Scholar]
  7. Liu J X, Li S J, Xu Y R. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities[J]. Journal of Industrial and Management Optimization, 2022, 18(4): 2599-2610. [CrossRef] [MathSciNet] [Google Scholar]
  8. Liu J X, Li S J. Unconstrained optimization reformulation for stochastic nonlinear complementarity problems[J]. Applicable Analysis, 2021, 100(6): 1158-1179. [CrossRef] [MathSciNet] [Google Scholar]
  9. Shapiro A, Xu H F. Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation[J]. Optimization, 2008, 57(3): 395-418. [CrossRef] [MathSciNet] [Google Scholar]
  10. Xu H. Sample average approximation methods for a class of stochastic variational inequality problems[J]. Asia-Pacific Journal of Operational Research, 2010, 27(1): 103-119. [CrossRef] [MathSciNet] [Google Scholar]
  11. Jiang H Y, Xu H F. Stochastic approximation approaches to the stochastic variational inequality problem[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1462-1475. [CrossRef] [MathSciNet] [Google Scholar]
  12. Gürkan G, Yonca Özge A, Robinson S M. Sample-path solution of stochastic variational inequalities[J]. Mathematical Programming, 1999, 84(2): 313-333. [CrossRef] [MathSciNet] [Google Scholar]
  13. Xu H F. Uniform exponential convergence of sample average random functions under general sampling with applications in stochastic programming[J]. Journal of Mathematical Analysis and Applications, 2010, 368(2): 692-710. [Google Scholar]
  14. Jiang J, Li S J. Regularized sample average approximation approach for two-stage stochastic variational inequalities[J]. Journal of Optimization Theory and Applications, 2021, 190(2): 650-671. [CrossRef] [MathSciNet] [Google Scholar]
  15. Chen X J, Pong T K, Wets R J B. Two-stage stochastic variational inequalities: An ERM-solution procedure[J]. Mathematical Programming, 2017, 165(1): 71-111. [CrossRef] [MathSciNet] [Google Scholar]
  16. Chen X J, Sun H L, Xu H F. Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems[J]. Mathematical Programming, 2019, 177(1): 255-289. [CrossRef] [MathSciNet] [Google Scholar]
  17. Rockafellar R T, Sun J. Solving monotone stochastic variational inequalities and complementarity problems by progressive hedging[J]. Mathematical Programming, 2019, 174(1): 453-471. [CrossRef] [MathSciNet] [Google Scholar]
  18. Rockafellar R T, Wets R J B. Stochastic variational inequalities: Single-stage to multistage[J]. Mathematical Programming, 2017, 165(1): 331-360. [CrossRef] [MathSciNet] [Google Scholar]
  19. Ruszczyski A, Shapiro A. Stochastic programming models[J]. Handbooks in Operations Research and Management Science, 2003, 10: 1-64. [CrossRef] [Google Scholar]
  20. Sun H L, Chen X J. Two-stage stochastic variational inequalities: Theory, algorithms and applications[J]. Journal of the Operations Research Society of China, 2021, 9(1): 1-32. [CrossRef] [MathSciNet] [Google Scholar]
  21. Jiang J, Chen X J, Chen Z P. Quantitative analysis for a class of two-stage stochastic linear variational inequality problems[J]. Computational Optimization and Applications, 2020, 76(2): 431-460. [Google Scholar]
  22. Liu J X, Li S J, Jiang J. Quantitative stability of two-stage stochastic linear variational inequality problems with fixed recourse[J]. Applicable Analysis, 2022, 101(8): 3122-3138. [CrossRef] [MathSciNet] [Google Scholar]
  23. Rachev S T, Römisch W. Quantitative stability in stochastic programming: The method of probability metrics[J]. Mathematics of Operations Research, 2002, 27(4): 792-818. [CrossRef] [MathSciNet] [Google Scholar]
  24. Römisch W. Stability of stochastic programming problems[J]. Handbooks in Operations Research and Management Science, 2003, 10: 483-554. [CrossRef] [Google Scholar]
  25. Rachev S T, Klebanov L B, Stoyanov S V, et al. The Methods of Distances in the Theory of Probability and Statistics[M]. New York: Springer-Verlag, 2013. [CrossRef] [Google Scholar]
  26. Chen X J, Xiang S H. Newton iterations in implicit time-stepping scheme for differential linear complementarity systems[J]. Mathematical Programming, 2013, 138(1): 579-606. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.