Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
Page(s) 547 - 557
DOI https://doi.org/10.1051/wujns/2024296547
Published online 07 January 2025
  1. Oldham K B, Spanier J. The Fractional Calculus [M]. New York: Academic Press, 1974. [MathSciNet] [Google Scholar]
  2. Luo S K. Analytical mechanics method of fractional dynamics and its applications [J]. Journal of Dynamics and Control, 2019, 17(5): 432-438. [Google Scholar]
  3. Yin Y D, Zhao D M, Liu J L, et al. Study on the rate dependency of acrylic elastomer based fractional viscoelastic model [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 155-163. [Google Scholar]
  4. Si H, Zheng Y A. Adaptive predictive synchronization of fractional order chaotic systems [J]. Journal of Dynamics and Control, 2021, 19(5): 8-12(Ch). [Google Scholar]
  5. Song C J. Generalized fractional forced Birkhoff equations [J]. Journal of Dynamics and Control, 2019, 17(5): 446-452. [Google Scholar]
  6. Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics [J]. Phys Rev E, 1996, 53(2): 1890-1899. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. Riewe F. Mechanics with fractional derivatives [J]. Phys Rev E, 1997, 55(3): 3581-3592. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. Malinowska A B, Torres D F M. Fractional calculus of variations for a combined Caputo derivative [J]. Fract Calc Appl Anal, 2011, 14(4): 523-537. [Google Scholar]
  9. Zhang Y. Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives [J]. Chin Phys B, 2012, 21(8): 84502. [Google Scholar]
  10. Luo S K, Xu Y L. Fractional Birkhoffian mechanics [J]. Acta Mech, 2015, 226(3): 829-844. [CrossRef] [MathSciNet] [Google Scholar]
  11. Li Z P. Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properties [M]. Beijing: Beijing Polytechnic University Press, 1993(Ch). [Google Scholar]
  12. Dirac P A M. Lecture on Quantum Mechanics [M]. New York: Yeshiva University, 1964. [Google Scholar]
  13. Li Z P. Contrained Hamiltonian Systems and Their Symmetrical Properties [M]. Beijing: Beijing Polytechnic University Press, 1999. [Google Scholar]
  14. Li Z P, Jiang J H. Symmetries in Constrained Canonical Systems [M]. Beijing: Science Press, 2002. [Google Scholar]
  15. Noether A E. Invariante variationsprobleme [J]. Nachrichten von der Gesellschaft der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, KI(2): 235-257. [Google Scholar]
  16. Lutzky M. Dynamical symmetries and conserved quantities [J]. Journal of Physics A: Mathematical and General, 1979, 12(7): 973-981. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. Mei F X, Wu H B. Dynamics of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2009. [Google Scholar]
  18. Mei F X. Analytical Mechanics (II) [M]. Beijing: Beijing Institute of Technology Press, 2013. [Google Scholar]
  19. Song C J, Wang J H. Conserved quantity for fractional constrained Hamiltonian system [J]. Wuhan University Journal of Natural Sciences, 2022, 27(3): 201-210. [CrossRef] [EDP Sciences] [Google Scholar]
  20. Song C J, Zhai X H. Noether theorem for fractional singular systems [J]. Wuhan University Journal of Natural Sciences, 2023, 28(3): 207-216. [CrossRef] [EDP Sciences] [Google Scholar]
  21. Song C J, Zhang Y. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications [J]. Frac Cal Appl Anal, 2018, 21(2): 509-526. [CrossRef] [MathSciNet] [Google Scholar]
  22. Podlubny I. Fractional Differential Equations [M]. San Diego: Academic Press, 1999. [Google Scholar]
  23. Wu Q, Huang J H. Fractional Order Calculus [M]. Beijing: Tsinghua University Press, 2016(Ch). [Google Scholar]
  24. Gelfand I M, Fomin S V. Calculus of Variations [M]. London: Prentice-Hall, 1963. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.