Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 3, June 2023
Page(s) 207 - 216
DOI https://doi.org/10.1051/wujns/2023283207
Published online 13 July 2023

© Wuhan University 2023

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI https://doi.org/10.1051/wujns/2023283207

0 Introduction

Given a Lagrangian L=L(t,q,q˙), q=(q1,q2,,qn), q˙=(q˙1,q˙2,,q˙n), we define

H i j = 2 L q ˙ i q ˙ j ,   i , j = 1,2 , , n (1)

where the matrix [Hij] is called a Hessian matrix. If det[Hij]0, then the Lagrangian is called regular. If det[Hij]=0, then the Lagrangian is called singular. For example, the Parra's Lagrangian[1]

L = 1 2 m ( q ˙ 1 2 + q ˙ 2 2 + l 2 q ˙ 3 2 + 2 l q ˙ 1 q ˙ 3 c o s q 3 + 2 l q ˙ 2 q ˙ 3 s i n q 3 ) + V ( q 1 , q 2 , q 3 ) (2)

the Deriglazov's Lagrangian[2]

L = q 2 2 q ˙ 1 2 + q 1 2 q ˙ 2 2 + 2 q 1 q 2 q ˙ 1 q ˙ 2 + V ( q 1 , q 2 )   ( V = q 1 2 + q 2 2 ) (3)

the Cawley's Lagrangian[3]

L = q ˙ 1 q ˙ 2 + V ( q 1 , q 2 , q 3 )   ( V = 1 2 q 2 q 3 2 ) (4)

and the Mittelstaedt's Lagrangian[4]

L = 1 2 m ( q ˙ 1 + q ˙ 2 ) 2 + 1 2 μ q ˙ 3 2 + V ( q 1 , q 2 , q 3 ) (5)

where l, m and μ are constants and V represents potential energy, they are all singular. In fact, singular systems have a close relationship with the condensed matter theories, the gauge field theories, the quantum field theories of anyons, the particle physics and so forth[5-7]. Regarding the singular systems, Dirac[8] was the first one to study their canonical equation. Then, singular systems were also investigated in several classical mechanics textbooks[5-7], including both the canonical equation and the Noether theorem.

The Noether theorem was introduced by the German female mathematician Noether [9]. The Noether symmetry method is one of the methods used to solve the differential equations of motion. There are many results on the Noether theorem [10-12]. Fractional calculus has been popular recently. The fractional derivatives that are used most often are the Riemann-Liouville, Caputo and Riesz fractional derivatives. In 2007, Frederico and Torres [13] initiated the study of the fractional Noether theorem. Based on a bilinear operator D (D(I)=0), they defined the fractional conserved quantity. Using this definition, fractional Noether theorems and their applications were discussed for several mechanics systems, such as the Lagrangian system[14-17], the Birkhoffian system [18,19], the Hamiltonian system [20], and the multidimensional Lagrangian system [21]. Two years later, with the idea of the definition of the classical conserved quantity, Atanacković et al [22] introduced another definition of the fractional conserved quantity (dI/dt=0). They held the point that this definition is more reasonable than the former definition. Then, fractional Noether theorems of the different mechanics systems, such as the Birkhoffian system [23-25], the Hamiltonian system [26,27] and the nonconservative system [28,29] were obtained.

At present, two fractional singular systems, one concerning the mixed integer and Caputo fractional derivatives and the other concerning the Caputo fractional derivatives, have been established, including the fractional primary constraints and the fractional constrained Hamilton equations [30]. The next task is to find the solutions to them. Therefore, in this paper, we intend to make use of the Noether symmetry method to complete this study.

1 Preliminaries

We give the definitions of the Riemann-Liouville and the Caputo fractional derivatives as follows. Given a function f(t) and two constants α and β that satisfy n-1α,β<n, where n is an integer, the Riemann-Liouville fractional derivative and the Caputo fractional derivative have the forms [31]

t 1 R L D t α f ( t ) = 1 Γ ( n - α ) ( d d t ) n t 1 t ( t - ξ ) n - α - 1 f ( ξ ) d ξ (6)

t R L D t 2 β f ( t ) = 1 Γ ( n - β ) ( - d d t ) n t t 2 ( ξ - t ) n - β - 1 f ( ξ ) d ξ (7)

t 1 C D t α f ( t ) = 1 Γ ( n - α ) t 1 t ( t - ξ ) n - α - 1 ( d d ξ ) n f ( ξ ) d ξ (8)

t C D t 2 β f ( t ) = 1 Γ ( n - β ) t t 2 ( ξ - t ) n - β - 1 ( - d d ξ ) n f ( ξ ) d ξ (9)

here, α and β represent the orders of the fractional derivatives. When α,β1, the fractional derivative operators reduce to the classical integer derivative operators, namely,

t 1 R L D t 1 = D t 1 C D t 1 = d d t ,   D t R L D t 2 1 = D t C D t 2 1 = - d d t (10)

Throughout this paper, we assume that 0<α,β<1.

For the Lagrangian LM=LM(t,qM,q˙M,Dt1CDtαqM), where qM=(qM1,qM2,,qMn), q˙M=(q˙M1,q˙M2,,q˙Mn), t1CDtαqM=(t1CDtαqM1,Dt1CDtαqM2,,Dt1CDtαqMn),qMj are the generalized coordinates, q˙Mj=dqMj/dt are the generalized velocities, t1CDtαqMj are the Caputo derivatives of qMj, qMj()C2([t1,t2];R), j=1,2,,n, LM(,,,)C2([t1,t2]×Rn×Rn×Rn;R), and 0<α<1, we define the corresponding generalized momenta and the Hamiltonian as

p M i = L M ( t , q M , q ˙ M , D t 1 C D t α q M ) q ˙ M i ,   p M i α = L M ( t , q M , q ˙ M , D t 1 C D t α q M ) D t 1 C D t α q M i , H M = p M i q ˙ M i + p M i α D t 1 C D t α q M i - L M ( t , q M , q ˙ M , D t 1 C D t α q M ) ,   i = 1,2 , , n (11)

Specifically, we assume that t1CDtαqMi can always be described by a function that depends on the elements of t, qMj, q˙Mj and pMjα, namely, t1CDtαqMi=hMi(t,qMj,q˙Mj,pMjα), i,j=1,2,,n.

In this case, we define the elements of the Hessian matrix as

H M i j = 2 L M ( t , q M , q ˙ M , D t 1 C D t α q M ) q ˙ M i q ˙ M j ,   i , j = 1,2 , , n (12)

if rank[HMij]=R, 0R<n, then the fractional primary constraints with the mixed derivatives have the forms [30]

ϕ M a ( t , q M j , p M j , p M j α ) = 0 (13)

where a=1,2,,n-R, 0R<n, j=1,2,,n. The fractional constrained Hamilton equations with the mixed derivatives have the forms [30]

q ˙ M i = H M p M i + λ M a ϕ M a p M i ,   p ˙ M i = - H M q M i + D t R L D t 2 α p M i α - λ M a ϕ M a q M i ,   D t 1 C D t α q M i = H M p M i α + λ M a ϕ M a p M i α (14)

where HM=HM(t,qM,pM,pMα), qM=(qM1,qM2,,qMn), pM=(pM1,pM2,,pMn), pMα=(pM1α,pM2α,,pMnα), λMa(t) are the Lagrange multipliers, a=1,2,,n-R, 0R<n, and i=1,2,,n.

However, when the Lagrange multipliers cannot be solved, Eq. (14) is invalid, and the fractional constrained Hamilton equations with the mixed derivatives have another forms, which have been investigated in Ref. [30]. In this paper, we discuss only the case in which the Lagrange multipliers can be solved.

For the Lagrangian LC=LC(t,qC,Dt1CDtαqC), where qC=(qC1,qC2,,qCn), t1CDtαqC=(t1CDtαqC1,Dt1CDtαqC2,,Dt1CDtαqCn),qCj are the generalized coordinates, t1CDtαqCj are the Caputo derivatives of qCj, qCj()C2([t1,t2];R), j=1,2,,n, LC(,,)C2([t1,t2]×Rn×Rn;R), and 0<α<1, we define the corresponding generalized momenta and the Hamiltonian as

p C i = L C ( t , q C , D t 1 C D t α q C ) D t 1 C D t α q C i ,   H C = p C i D t 1 C D t α q C i - L C ( t , q C , D t 1 C D t α q C ) ,   i = 1,2 , , n (15)

We assume that the Lagrangian LC(t,qC,Dt1CDtαqC) is singular, i.e., only R elements of t1CDtαqCi, i=1,2,,n, can be solved, where 0R<n.

In this case, the fractional primary constraints with the Caputo fractional derivatives have the forms [30]

ϕ C a ( t , q C j , p C j ) = 0 ,   a = 1,2 , , n - R ,   0 R < n ,   j = 1,2 , , n (16)

The fractional constrained Hamilton equations with the Caputo fractional derivatives have the forms [30]

t 1 C D t α q C i = H C p C i + λ C a ϕ C a p C i ,   D t R L D t 2 α p C i = H C q C i + λ C a ϕ C a q C i (17)

where HC=HC(t,qC,pC), qC=(qC1,qC2,,qCn), pC=(pC1,pC2,,pCn), λCa are the Lagrange multipliers, a=1,2,,n-R, 0R<n, and i=1,2,,n.

Similarly, when the Lagrange multipliers cannot be solved, Eq. (17) is invalid, and the fractional constrained Hamilton equations with the Caputo fractional derivatives have another forms, which have been investigated in Ref. [30]. In this paper, we discuss only the case in which the Lagrange multipliers can be solved.

2 Fractional Noether Theorem with Mixed Derivatives

Noether symmetry with the mixed derivatives is determined by the Noether symmetric transformations, under which the fractional Hamilton action with the mixed derivatives

I M = t 1 t 2 L M ( t , q M , q ˙ M , D t 1 C D t α q M ) d t = t 1 t 2 ( p M i q ˙ M i + p M i α D t 1 C D t α q M i - H M ( t , q M , p M , p M α ) ) d t (18)

remains invariant. Therefore, if we want to study the Noether theorem, we first need to give the infinitesimal transformations with the mixed derivatives. Then, we discuss the change of the fractional Hamilton action (Eq. (18)) under the given infinitesimal transformations. Finally, the condition which is called the fractional Noether identity with the mixed derivatives is obtained.

Here, the infinitesimal transformations have the forms

t ¯ = t + Δ t ,   q ¯ M i ( t ¯ ) = q M i ( t ) + Δ q M i ,   p ¯ M i ( t ¯ ) = p M i ( t ) + Δ p M i ,   p ¯ M i α ( t ¯ ) = p M i α ( t ) + Δ p M i α (19)

whose expansions are

t ¯ = t + θ M ξ M 0 ( t , q M , p M , p M α ) + ο ( θ M ) ,   q ¯ M i ( t ¯ ) = q M i ( t ) + θ M ξ M i ( t , q M , p M , p M α ) + ο ( θ M ) , p ¯ M i ( t ¯ ) = p M i ( t ) + θ M η M i ( t , q M , p M , p M α ) + ο ( θ M ) ,    p ¯ M i α ( t ¯ ) = p M i α ( t ) + θ M η M i α ( t , q M , p M , p M α ) + ο ( θ M ) (20)

where ξM0, ξMi, ηMi and ηMiα are called the infinitesimal generators with the mixed derivatives, θM is a small parameter, and i=1,2,,n.

We denote the change of the fractional Hamilton action as ΔIM, namely, ΔIM=I¯M-IM. If we consider only the linear part of θM, then we have

Δ I M = t ¯ 1 t ¯ 2 ( p ¯ M i q ¯ ˙ M i + p ¯ M i α D t ¯ 1 C D t ¯ α q ¯ M i - H M ( t , q ¯ M , p ¯ M , p ¯ M α ) ) d t ¯ - t 1 t 2 ( p M i q ˙ M i + p M i α D t 1 C D t α q M i - H M ( t , q M , p M , p M α ) ) d t = t 1 t 2 [ ( p M i + Δ p M i ) ( q ˙ M i + Δ q ˙ M i ) + ( p M i α + Δ p M i α ) ( t 1 C D t α q M i + D t 1 C D t α δ q M i + Δ t d d t D t 1 C D t α q M i - 1 Γ ( 1 - α ) ( ( t - t 1 ) - α q ˙ M i ( t 1 ) Δ t 1 ) ) - H M ( t + Δ t , q M j + Δ q M j , p M j + Δ p M j , p M j α + Δ p M j α ) ] ( 1 + d d t Δ t ) d t - t 1 t 2 ( p M i q ˙ M i + p M i α D t 1 C D t α q M i - H M ( t , q M , p M , p M α ) ) d t = t 1 t 2 [ p M i q ˙ M i + p M i Δ q ˙ M i + Δ p M i q ˙ M i + p M i α D t 1 C D t α q M i + p M i α D t 1 C D t α δ q M i + p M i α Δ t d d t D t 1 C D t α q M i + Δ p M i α D t 1 C D t α q M i - p M i α Γ ( 1 - α ) ( t - t 1 ) - α q ˙ M i ( t 1 ) Δ t 1 - H M ( t , q M , p M , p M α ) - H M t Δ t - H M q M i Δ q M i - H M p M i Δ p M i - H M p M i α Δ p M i α + ( p M i q ˙ M i + p M i α D t 1 C D t α q M i - H M ) d d t Δ t ] d t - t 1 t 2 ( p M i q ˙ M i + p M i α D t 1 C D t α q M i - H M ( t , q M , p M , p M α ) ) d t = θ M t 1 t 2 [ p M i ξ ˙ M i + p M i α D t 1 C D t α ( ξ M i - q ˙ M i ξ M 0 ) + ( p M i α d d t D t 1 C D t α q M i - H M t ) ξ M 0 + λ M a ϕ M a p M i α η M i α - p M i α Γ ( 1 - α ) ( t - t 1 ) - α q ˙ M i ( t 1 ) ξ M 0 ( t 1 ) + ( p M i α D t 1 C D t α q M i - H M ) ξ ˙ M 0 - H M q M i ξ M i + λ M a ϕ M a p M i η M i ] d t (21)

where

  D t ¯ 1 C D t ¯ α q ¯ M i = D t 1 C D t α q M i + D t 1 C D t α δ q M i + Δ t d d t D t 1 C D t α q M i - 1 Γ ( 1 - α ) ( t - t 1 ) - α q ˙ M i ( t 1 ) Δ t 1 ξ M 0 ( t 1 ) = ξ M 0 ( t 1 , q M ( t 1 ) , p M ( t 1 ) , p M α ( t 1 ) ) ,   Δ q ˙ M i = θ M ( ξ ˙ M i - q ˙ M i ξ ˙ M 0 ) ,

That fractional Hamilton action remains invariant implies ΔIM=0, therefore, from Eq. (21), we have

p M i ξ ˙ M i + p M i α D t 1 C D t α ( ξ M i - q ˙ M i ξ M 0 ) + ( p M i α d d t D t 1 C D t α q M i - H M t ) ξ M 0 - H M q M i ξ M i + λ M a ϕ M a p M i α η M i α + λ M a ϕ M a p M i η M i - p M i α Γ ( 1 - α ) ( t - t 1 ) - α q ˙ M i ( t 1 ) ξ M 0 ( t 1 ) + ( p M i α D t 1 C D t α q M i - H M ) ξ ˙ M 0 = 0 ,   i = 1,2 , , n (22)

Equation (22) is called the fractional Noether identity with the mixed derivatives for the fractional constrained Hamiltonian system (Eq. (14)). The infinitesimal transformations in this case are called the Noether symmetric transformations, which determine the Noether symmetry.

In this paper, we adopt Atanacković's definition of the fractional conserved quantity. We review it first.

Definition 1 [22] A quantity C is called a fractional conserved quantity if and only if dC/dt=0 holds.

Theorem 1   If the infinitesimal generators ξM0, ξMi, ηMi and ηMiα satisfy the fractional Noether identity (Eq. (22)), then a fractional conserved quantity with the mixed derivatives exists for the fractional constrained Hamiltonian system (Eq. (14)), as follows:

C M = ( p M i α D t 1 C D t α q M i - H M ) ξ M 0 + t 1 t [ p M i α D t 1 C D τ α ( ξ M i - q ˙ M i ξ M 0 ) - ( ξ M i - q ˙ M i ξ M 0 ) D τ R L D t 2 α p M i α ] d τ + p M i ξ M i - t 1 t p M i α Γ ( 1 - α ) ( τ - t 1 ) - α q ˙ M i ( t 1 ) ξ M 0 ( t 1 ) d τ = c o n s t (23)

Proof   It is obtained from Eqs. (14), (23) that

d d t C M = ( p ˙ M i α D t 1 C D t α q M i + p M i α d d t D t 1 C D t α q M i - H M t - H M p M i p ˙ M i - H M q M i q ˙ M i - H M p M i α p ˙ M i α ) ξ M 0 + ( p M i α D t 1 C D t α q M i - H M ) ξ ˙ M 0 + p M i α D t 1 C D t α ( ξ M i - q ˙ M i ξ M 0 ) - ( ξ M i - q ˙ M i ξ M 0 ) D t R L D t 2 α p M i α + p M i ξ ˙ M i - p M i α Γ ( 1 - α ) ( t - t 1 ) - α q ˙ M i ( t 1 ) ξ M 0 ( t 1 ) + p ˙ M i ξ M i = H M q M i ξ M i + p ˙ M i ξ M i + ( p ˙ M i α D t 1 C D t α q M i - H M p M i p ˙ M i - H M q M i q ˙ M i - H M p M i α p ˙ M i α ) ξ M 0 - ( ξ M i - q ˙ M i ξ M 0 ) D t R L D t 2 α p M i α - λ M a ϕ M a p M i α η M i α - λ M a ϕ M a p M i η M i = ( p ˙ M i + H M q M i - D t R L D t 2 α p M i α + λ M a ϕ M a q M i ) ( ξ M i - q ˙ M i ξ M 0 ) - λ M a ϕ M a p M i α η M i α - λ M a ϕ M a q M i ( ξ M i - q ˙ M i ξ M 0 ) + ( p ˙ M i α D t 1 C D t α q M i - p ˙ M i α H M p M i α - H M p M i p ˙ M i ) ξ M 0 - λ M a ϕ M a p M i η M i + p ˙ M i ξ M 0 ( H M p M i + λ M a ϕ M a p M i ) = - λ M a ϕ M a p M i α η M i α - λ M a ϕ M a p M i η M i + p ˙ M i α ξ M 0 λ M a ϕ M a p M i α - λ M a ϕ M a q M i ( ξ M i - q ˙ M i ξ M 0 ) + p ˙ M i ξ M 0 λ M a ϕ M a p M i = - λ M a ϕ M a p M i α ( η M i α - p ˙ M i α ξ M 0 ) - λ M a ϕ M a p M i ( η M i - p ˙ M i ξ M 0 ) - λ M a ϕ M a q M i ( ξ M i - q ˙ M i ξ M 0 ) = 0

where

δ ϕ M a ( t , q M j , p M j , p M j α ) = ϕ M a q M i δ q M i + ϕ M a p M i δ p M i + ϕ M a p M i α δ p M i α = ϕ M a q M i ( Δ q M i - q ˙ M i Δ t ) + ϕ M a p M i ( Δ p M i - p ˙ M i Δ t ) + ϕ M a p M i α ( Δ p M i α - p ˙ M i α Δ t ) = θ M [ ϕ M a q M i ( ξ M i - q ˙ M i ξ M 0 ) + ϕ M a p M i ( η M i - p ˙ M i ξ M 0 ) + ϕ M a p M i α ( η M i α - p ˙ M i α ξ M 0 ) ] = 0

The proof is completed.

Furthermore, if the fractional Hamilton action (Eq. (18)) does not remain invariant under the infinitesimal transformations with the mixed derivatives, for instance, if ΔIM=I¯M-IM=-t1t2ddt(ΔGM)dt, where ΔGM=θMGM and GM=GM(t,qMj,pMjα,pMj) is called a gauge function with the mixed derivatives, then from Eq. (21), we obtain

p M i ξ ˙ M i + p M i α D t 1 C D t α ( ξ M i - q ˙ M i ξ M 0 ) + ( p M i α d d t D t 1 C D t α q M i - H M t ) ξ M 0 - H M q M i ξ M i + λ M a ϕ M a p M i α η M i α + λ M a ϕ M a p M i η M i - p M i α Γ ( 1 - α ) ( t - t 1 ) - α q ˙ M i ( t 1 ) ξ M 0 ( t 1 ) + ( p M i α D t 1 C D t α q M i - H M ) ξ ˙ M 0 + G ˙ M = 0 (24)

Equation (24) is called the fractional Noether-quasi identity with the mixed derivatives for the fractional constrained Hamiltonian system (Eq. (14)). The infinitesimal transformations in this case are called the Noether-quasi symmetric transformations with the mixed derivatives, which determine the Noether-quasi symmetry with the mixed derivatives. Then, a fractional conserved quantity can also be obtained from the Noether-quasi symmetry.

Theorem 2   If the infinitesimal generators ξM0, ξMi, ηMi, ηMiα and a gauge function GM satisfy the fractional Noether-quasi identity (Eq. (24)), then a fractional conserved quantity with the mixed derivatives exists for the fractional constrained Hamiltonian system (Eq. (14))

C G M = ( p M i α D t 1 C D t α q M i - H M ) ξ M 0 + t 1 t [ p M i α D t 1 C D τ α ( ξ M i - q ˙ M i ξ M 0 ) - ( ξ M i - q ˙ M i ξ M 0 ) D τ R L D t 2 α p M i α ] d τ + p M i ξ M i - t 1 t p M i α Γ ( 1 - α ) ( τ - t 1 ) - α q ˙ M i ( t 1 ) ξ M 0 ( t 1 ) d τ + G M = c o n s t (25)

Proof   The intended result can be obtained from Eqs. (14), (24) and (25).

Remark 1   The Noether-quasi symmetry with the mixed derivatives is more general than the Noether symmetry with the mixed derivatives. In fact, by setting GM=0, Theorem 2 reduces to Theorem 1.

An example is presented to illustrate the results and methods above.

Example 1 For the Lagrangian

L M = q ˙ M 1 q M 2 - q M 1 q ˙ M 2 + q M 1 2 + q M 2 2 + 1 2 [ ( t 1 C D t α q M 1 ) 2 + ( t 1 C D t α q M 2 ) 2 ] (26)

find its conserved quantity.

For this Lagrangian LM, there exist two fractional primary constraints [30]

ϕ M 1 = p M 1 - q M 2 = 0 ,   ϕ M 2 = p M 2 + q M 1 = 0 (27)

In addition, all the Lagrange multipliers can be obtained [30]:

λ M 1 = - q M 2 - 1 2 D t R L D t 2 α p M 2 α ,   λ M 2 = q M 1 + 1 2 D t R L D t 2 α p M 1 α (28)

The fractional constrained Hamilton equations can also be established [30]:

q ˙ M 1 = - q M 2 - 1 2 D t R L D t 2 α p M 2 α ,   q ˙ M 2 = q M 1 + 1 2 D t R L D t 2 α p M 1 α ,   p ˙ M 1 = q M 1 + 1 2 D t R L D t 2 α p M 1 α , [ p M 2 = q 2 + 12 R L t D α t 2 p α M 2 ,   C t 1 D α t q M 1 = p α M 1 ,   C t 1 D α t q M 2 = p α M 2 ] (29)

The fractional Noether-quasi identity (Eq. (24)) gives

p M 1 ξ ˙ M 1 + p M 1 α D t 1 C D t α ( ξ M 1 - q ˙ M 1 ξ M 0 ) + ( p M 1 α d d t D t 1 C D t α q M 1 + p M 2 α d d t D t 1 C D t α q M 2 ) ξ M 0 + λ M 1 η M 1 + λ M 2 η M 2 + 2 q M 1 ξ M 1 + 2 q M 2 ξ M 2 - p M 1 α Γ ( 1 - α ) ( t - t 1 ) - α q ˙ M 1 ( t 1 ) ξ M 0 ( t 1 ) + p M 2 ξ ˙ M 2 - p M 2 α Γ ( 1 - α ) ( t - t 1 ) - α q ˙ M 2 ( t 1 ) ξ M 0 ( t 1 ) + p M 2 α D t 1 C D t α ( ξ M 2 - q ˙ M 2 ξ M 0 ) + ( p M 1 α D t 1 C D t α q M 1 + p M 2 α D t 1 C D t α q M 2 - H M ) ξ ˙ M 0 + G ˙ M = 0 (30)

Through computation, we can verify that

ξ M 0 = - 1 ,   ξ M 1 = ξ M 2 = 0 ,   η M 1 = η M 2 = 0 ,   η M 1 α = η M 2 α = 0 ,   G M = 0 (31)

is a solution to Eq. (30). Finally, Theorem 2 gives the fractional conserved quantity

C G M = t 1 t ( p M 1 α d d τ D t 1 C D τ α q M 1 + p M 2 α d d τ D t 1 C D τ α q M 2 - q ˙ M 1 D τ R L D t 2 α p M 1 α - q ˙ M 2 D τ R L D t 2 α p M 2 α ) d τ - [ 1 2 ( p M 1 α ) 2 + 1 2 ( p M 2 α ) 2 + q M 1 2 + q M 2 2 ] = c o n s t (32)

3 Fractional Noether Theorem with only Caputo Fractional Derivatives

Noether symmetry with the Caputo fractional derivative is determined by the Noether symmetric transformations under which the fractional Hamilton action with the Caputo fractional derivatives

I C = t 1 t 2 L C ( t , q C , D t 1 C D t α q C ) d t = t 1 t 2 ( p C i D t 1 C D t α q C i - H C ( t , q C , p C ) ) d t (33)

remains invariant. Similarly, if we want to study the Noether theorem, we first need to give the infinitesimal transformations with the Caputo fractional derivative; then, we discuss the change of the fractional Hamilton action (Eq. (33)) under the given infinitesimal transformations. Finally, the condition called the fractional Noether identity with the Caputo fractional derivatives is obtained.

Here, the infinitesimal transformations have the forms

t ¯ = t + Δ t ,   q ¯ C i ( t ¯ ) = q C i ( t ) + Δ q C i ,   p ¯ C i ( t ¯ ) = p C i ( t ) + Δ p C i (34)

whose expansions are

t ¯ = t + θ C ξ C 0 ( t , q C , p C ) + ο ( θ C ) ,   q ¯ C i ( t ¯ ) = q C i ( t ) + θ C ξ C i ( t , q C , p C ) + ο ( θ C ) ,   p ¯ C i ( t ¯ ) = p C i ( t ) + θ C η C i ( t , q C , p C ) + ο ( θ C ) (35)

where ξC0, ξCi and ηCi are called the infinitesimal generators with the Caputo fractional derivatives, θC is a small parameter, and i=1,2,,n.

We denote the change of the fractional Hamilton action (Eq. (33)) as ΔIC; namely, ΔIC=I¯C-IC. If we consider only the linear part of θC, then we have

Δ I C = t ¯ 1 t ¯ 2 ( p ¯ C i D t ¯ 1 C D t ¯ α q ¯ C i - H C ( t , q ¯ C , p ¯ C ) ) d t ¯ - t 1 t 2 ( p C i D t 1 C D t α q C i - H C ( t , q C , p C ) ) d t = t 1 t 2 [ ( p C i + Δ p C i ) ( t 1 C D t α q C i + D t 1 C D t α δ q C i + Δ t d d t D t 1 C D t α q C i - 1 Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C i ( t 1 ) Δ t 1 ) - H C ( t + Δ t , q C j + Δ q C j , p C j + Δ p C j ) ] ( 1 + d d t Δ t ) d t - t 1 t 2 ( p C i D t 1 C D t α q C i - H C ( t , q C , p C ) ) d t = t 1 t 2 [ p C i D t 1 C D t α q C i + p C i D t 1 C D t α δ q C i + p C i Δ t d d t D t 1 C D t α q C i + Δ p C i D t 1 C D t α q C i - H C ( t , q C , p C ) - p C i Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C i ( t 1 ) Δ t 1 - H C t Δ t - H C p C i Δ p C i + ( p C i D t 1 C D t α q C i - H C ) d d t Δ t - H C q C i Δ q C i ] d t - t 1 t 2 ( p C i D t 1 C D t α q C i - H C ( t , q C , p C ) ) d t = θ C t 1 t 2 [ p C i D t 1 C D t α ( ξ C i - q ˙ C i ξ C 0 ) + ( p C i d d t D t 1 C D t α q C i - H M t ) ξ C 0 - H C q C i ξ C i - p C i Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C i ( t 1 ) ξ C 0 ( t 1 ) + ( p C i D t 1 C D t α q C i - H C ) ξ ˙ C 0 + λ C a ϕ C a p C i η C i ] d t (36)

where

  D t ¯ 1 C D t ¯ α q ¯ C i = D t 1 C D t α q C i + D t 1 C D t α δ q C i + Δ t d d t D t 1 C D t α q C i - 1 Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C i ( t 1 ) Δ t 1 ,   ξ C 0 ( t 1 ) = ξ C 0 ( t 1 , q C ( t 1 ) , p C ( t 1 ) ) .

That fractional Hamilton action (Eq. (33)) remains invariant implies ΔIC=0; therefore, from Eq. (36), we have

p C i D t 1 C D t α ( ξ C i - q ˙ C i ξ C 0 ) + ( p C i d d t D t 1 C D t α q C i - H C t ) ξ C 0 - H C q C i ξ C i + λ C a ϕ C a p C i η C i - p C i Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C i ( t 1 ) ξ C 0 ( t 1 ) + ( p C i D t 1 C D t α q C i - H C ) ξ ˙ C 0 = 0 ,   i = 1,2 , , n (37)

Equation (37) is called the fractional Noether identity with the Caputo fractional derivatives for the fractional constrained Hamiltonian system (Eq. (17)). The infinitesimal transformations in this case are called the Noether symmetric transformations with the Caputo fractional derivatives, which determine the Noether symmetry.

Theorem 3   If the infinitesimal generators ξC0, ξCi, ηCi and ηCiα satisfy the fractional Noether identity (Eq. (37)), then a fractional conserved quantity with the Caputo fractional derivatives exists for the fractional constrained Hamiltonian system (Eq. (17)) as follows:

C C = ( p C i D t 1 C D t α q C i - H C ) ξ C 0 + t 1 t [ p C i D t 1 C D τ α ( ξ C i - q ˙ C i ξ C 0 ) - ( ξ C i - q ˙ C i ξ C 0 ) D τ R L D t 2 α p C i ] d τ [ - t 1 t p C i Γ 1 - α τ - t 1 - α q C i t 1 ξ C 0 t 1 d τ = c o n s t ] (38)

Proof   It is obtained from Eqs. (17), (37) and (38) that

d d t C C = ( p ˙ C i D t 1 C D t α q C i + p C i d d t D t 1 C D t α q C i - H C t - H C q C i q ˙ C i - H C p C i p ˙ C i ) ξ C 0 + ( p C i D t 1 C D t α q C i - H C ) ξ ˙ C 0 + p C i D t 1 C D t α ( ξ C i - q ˙ C i ξ C 0 ) - ( ξ C i - q ˙ C i ξ C 0 ) D t R L D t 2 α p C i - p C i Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C i ( t 1 ) ξ C 0 ( t 1 ) = H C q C i ξ C i + ( p ˙ C i D t 1 C D t α q C i - H C p C i p ˙ C i - H C q C i q ˙ C i ) ξ C 0 - ( ξ C i - q ˙ C i ξ C 0 ) D t R L D t 2 α p C i α - λ C a ϕ C a p C i η C i = ( H C q C i - D t R L D t 2 α p C i + λ C a ϕ C a q C i ) ( ξ C i - q ˙ C i ξ C 0 ) - λ C a ϕ C a p C i η C i - λ C a ϕ C a q C i ( ξ C i - q ˙ C i ξ C 0 ) + ( p ˙ C i D t 1 C D t α q C i - H C p C i p ˙ C i ) ξ C 0 = - λ C a ϕ C a p C i η C i + p ˙ C i ξ C 0 λ C a ϕ C a p C i - λ C a ϕ C a q C i ( ξ C i - q ˙ C i ξ C 0 ) = - λ C a ϕ C a p C i ( η C i - p ˙ C i ξ C 0 ) - λ C a ϕ C a q C i ( ξ C i - q ˙ C i ξ C 0 ) = 0 ,

where

δ ϕ C a ( t , q C j , p C j ) = ϕ C a q C i δ q C i + ϕ C a p C i δ p C i = ϕ C a q C i ( Δ q C i - q ˙ C i Δ t ) + ϕ C a p C i ( Δ p C i - p ˙ C i Δ t ) = θ C [ ϕ C a q C i ( ξ C i - q ˙ C i ξ C 0 ) + ϕ C a p C i ( η C i - p ˙ C i ξ C 0 ) ] = 0 .

The proof is completed.

Let ΔIC=I¯C-IC=-t1t2ddt(ΔGC)dt, where ΔGC=θCGC and GC=GC(t,qCj,pCj) is a gauge function with the Caputo fractional derivatives; then, from Eq. (37), we obtain

p C i D t 1 C D t α ( ξ C i - q ˙ C i ξ C 0 ) + ( p C i d d t D t 1 C D t α q C i - H C t ) ξ C 0 - H C q C i ξ C i + λ C a ϕ C a p C i η C i - p C i Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C i ( t 1 ) ξ C 0 ( t 1 ) + ( p C i D t 1 C D t α q C i - H C ) ξ ˙ C 0 + G ˙ C = 0 ,   i = 1,2 , , n (39)

Equation (39) is called the fractional Noether-quasi identity with the Caputo fractional derivatives for the fractional constrained Hamiltonian system (Eq. (17)). The infinitesimal transformations in this case are called Noether-quasi symmetric transformations, which determine the Noether-quasi symmetry. Then, a fractional conserved quantity with the Caputo fractional derivatives can be obtained.

Theorem 4   If the infinitesimal generators ξC0, ξCi, ηCi, and a gauge function GC satisfy the fractional Noether-quasi identity (Eq. (39)), then a fractional conserved quantity with the Caputo fractional derivatives exists for the fractional constrained Hamiltonian system (Eq. (17))

C G C = ( p C i D t 1 C D t α q C i - H C ) ξ C 0 + t 1 t [ p C i D t 1 C D τ α ( ξ C i - q ˙ C i ξ C 0 ) - ( ξ C i - q ˙ C i ξ C 0 ) D τ R L D t 2 α p C i ] d τ - t 1 t p C i Γ ( 1 - α ) ( τ - t 1 ) - α q ˙ C i ( t 1 ) ξ C 0 ( t 1 ) d τ + G C = c o n s t (40)

Proof   The intended result can be obtained from Eqs. (17), (39) and (40).

Remark 2   Based on the Caputo fractional derivatives, the Noether-quasi symmetry is more general than the Noether symmetry. In fact, by setting GC=0, Theorem 4 reduces to Theorem 3.

Remark 3   Based on the Caputo fractional derivatives, if let α1, then the fractional primary constraint (Eq. (16)), the fractional constrained Hamilton equation (Eq. (17)) and the Noether theorem (Theorem 3) reduce to the corresponding classical integer-order cases, which are consistent with the results in Ref. [6].

An example is presented to illustrate the results and methods above.

Example 2 For the Lagrangian

L C = q C 2 D t 1 C D t α q C 1 - q C 1 D t 1 C D t α q C 2 + ( q C 1 ) 2 + ( q C 2 ) 2 (41)

find its conserved quantity.

For this Lagrangian LC, there exist two fractional primary constraints [30]:

ϕ C 1 = p C 1 - q C 2 = 0 ,   ϕ C 2 = p C 2 + q C 1 = 0 . (42)

The fractional constrained Hamilton equations can also be established [30]:

t R L D t 2 α p C 1 = - 2 q C 1 + D t 1 C D t α q C 2 ,   D t R L D t 2 α p C 2 = - 2 q C 2 - D t 1 C D t α q C 1 (43)

The fractional Noether-quasi identity (Eq. (39)) gives

p C 1 D t 1 C D t α ( ξ C 1 - q ˙ C 1 ξ C 0 ) + p C 2 D t 1 C D t α ( ξ C 2 - q ˙ C 2 ξ C 0 ) + 2 q C 1 ξ C 1 + 2 q C 2 ξ C 2 + λ C 1 η C 1 + λ C 2 η C 2 + ( p C 1 d d t D t 1 C D t α q C 1 + p C 2 d d t D t 1 C D t α q C 2 ) ξ C 0 - p C 1 Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C 1 ( t 1 ) ξ C 0 ( t 1 ) - p C 2 Γ ( 1 - α ) ( t - t 1 ) - α q ˙ C 2 ( t 1 ) ξ C 0 ( t 1 ) + ( p C 1 D t 1 C D t α q C 1 + p C 2 D t 1 C D t α q C 2 - H C ) ξ ˙ C 0 + G ˙ C = 0 (44)

Through computation, we can verify that

ξ C 0 = - 1 ,   ξ C 1 = ξ C 2 = 0 ,   η C 1 = η C 2 = 0 ,   G C = 0 (45)

is a solution to Eq. (44). Finally, Theorem 4 gives the fractional conserved quantity

C G C = t 1 t ( p C 1 d d τ D t 1 C D τ α q C 1 + p C 2 d d τ D t 1 C D τ α q C 2 ) d τ - [ p C 1 D t 1 C D t α q C 1 + p C 2 D t 1 C D t α q C 2 + q C 1 2 + q C 2 2 ] (46)

4 Conclusion

Noether theorems for the singular systems with the mixed derivatives and with only Caputo fractional derivatives are studied for the first time. Theorems 1-4 are all new work. Besides, the constrained Hamiltonian system on time scales is another topic deserved to be done.

References

  1. Parra J C. On singular lagrangians and Dirac's method[J]. Revista Mexicana De Física, 2012, 58(1): 61-68. [MathSciNet] [Google Scholar]
  2. Deriglazov A. Classical Mechanics Hamiltonian and Lagrangian Formalism [M]. Berlin: Springer-Verlag, 2010. [Google Scholar]
  3. Cawley R. Determination of the Hamiltonian in the presence of constraints[J]. Physical Review Letters, 1979, 42(7): 413-416. [NASA ADS] [CrossRef] [Google Scholar]
  4. Mittelstaedt P. Klassische Mechanik [M]. Germany: Hochschultaschenbücher Verlag, 1970. [Google Scholar]
  5. Li Z. Symmetries in Constrained Canonical Systems [M]. Beijing: Science Press, 2002(Ch). [Google Scholar]
  6. Li Z P. Contrained Hamiltonian Systems and Their Symmetrical Properties [M]. Beijing: Beijing Polytechnic University Press, 1999(Ch). [Google Scholar]
  7. Li Z P. Classical and Quantal Dynamics of Contrained Systems and Their Symmetrical Properties [M]. Beijing: Beijing Polytechnic University Press, 1993(Ch). [Google Scholar]
  8. Dirac P A M. Generalized Hamiltonian dynamics[J]. Canadian Journal of Mathematics, 1950, 2: 129-148. [CrossRef] [Google Scholar]
  9. Noether A E. Invariante variationsprobleme [J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1918, KI: 235-257. [Google Scholar]
  10. Mei F X, Wu H B. Dynamics of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2009. [Google Scholar]
  11. Mei F X. Aanlytical Mechanics [M]. Beijing: Beijing Institute of Technology Press, 2013. [Google Scholar]
  12. Zhang Y, Cai J X. Noether theorem of herglotz-type for nonconservative Hamilton systems in event space[J]. Wuhan University Journal of Natural Sciences, 2021, 26(5): 376-382. [Google Scholar]
  13. Frederico G S F, Torres D F M. A formulation of Noether's theorem for fractional problems of the calculus of variations[J]. Journal of Mathematical Analysis and Applications, 2007, 334(2): 834-846. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. Frederico G S F, Torres D F M. Fractional conservation laws in optimal control theory[J]. Nonlinear Dynamics, 2008, 53(3): 215-222. [CrossRef] [MathSciNet] [Google Scholar]
  15. Frederico G S F, Torres D F M. Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense[J]. Reports on Mathematical Physics, 2013, 71(3): 291-304. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. Frederico G S F, Torres D F M. Fractional Noether's theorem in the Riesz-Caputo sense[J]. Applied Mathematics and Computation, 2010, 217(3): 1023-1033. [CrossRef] [MathSciNet] [Google Scholar]
  17. Frederico G S F. Fractional optimal control in the sense of Caputo and the fractional Noether's theorem[J]. International Mathematical Forum, 2008, 3(10): 479-493. [MathSciNet] [Google Scholar]
  18. Jia Q L, Wu H B, Mei F X. Noether symmetries and conserved quantities for fractional forced Birkhoffian systems[J]. Journal of Mathematical Analysis and Applications, 2016, 442(2): 782-795. [CrossRef] [MathSciNet] [Google Scholar]
  19. Zhou Y. The Fractional Pfaff-Birkhoff Variational Problem and Its Symmetries [D]. Suzhou: Suzhou University of Science and Technology, 2013(Ch). [Google Scholar]
  20. Zhou S, Fu H, Fu J L. Symmetry theories of Hamiltonian systems with fractional derivatives[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(10): 1847. [CrossRef] [Google Scholar]
  21. Malinowska A B. A formulation of the fractional Noether-type theorem for multidimensional Lagrangians[J]. Applied Mathematics Letters, 2012, 25(11): 1941-1946. [CrossRef] [MathSciNet] [Google Scholar]
  22. Atanacković T M, Konjik S, Pilipović S, et al. Variational problems with fractional derivatives: Invariance conditions and Noether's theorem [J]. Nonlinear Analysis Theory Methods & Applications, 2009, 71: 1504-1517. [CrossRef] [Google Scholar]
  23. Zhai X H, Zhang Y. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay [J]. Commun Nonlinear Sci Numer Simulat, 2016, 36: 81-97. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. Zhang Y, Zhai X H. Noether symmetries and conserved quantities for fractional Birkhoffian systems[J]. Nonlinear Dynamics, 2015, 81: 469-480. [CrossRef] [MathSciNet] [Google Scholar]
  25. Song C J, Zhang Y. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications [J]. Fract Calc Appl Anal, 2018, 21: 509-526. [CrossRef] [MathSciNet] [Google Scholar]
  26. Zhang S H, Chen B Y, Fu J L. Hamilton formalism and Noether symmetry for mechanico electrical systems with fractional derivatives [J]. Chin Phys B, 2012, 21: 100202. [CrossRef] [Google Scholar]
  27. Song C J. Noether symmetry for fractional Hamiltonian system [J]. Phys Lett A, 2019, 29: 125914. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  28. Jin S X, Zhang Y. Noether theorem for non-conservative systems with time delay in phase space based on fractional model[J]. Nonlinear Dynamics, 2015, 82: 663-676. [CrossRef] [MathSciNet] [Google Scholar]
  29. Jin S X, Zhang Y. Noether theorem for non-conservative Lagrange systems with time delay based on fractional model[J]. Nonlinear Dynamics, 2015, 79: 1169-1183. [CrossRef] [MathSciNet] [Google Scholar]
  30. Song C J, Agrawal O P. Hamiltonian formulation of systems described using fractional singular Lagrangian[J]. Acta Applicandae Mathematicae, 2021, 172(1): 9. [CrossRef] [MathSciNet] [Google Scholar]
  31. Podlubny I. Fractional Differential Equations [M]. San Diego: Academic Press, 1999. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.