Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 3, June 2023
Page(s) 207 - 216
DOI https://doi.org/10.1051/wujns/2023283207
Published online 13 July 2023
  1. Parra J C. On singular lagrangians and Dirac's method[J]. Revista Mexicana De Física, 2012, 58(1): 61-68. [MathSciNet] [Google Scholar]
  2. Deriglazov A. Classical Mechanics Hamiltonian and Lagrangian Formalism [M]. Berlin: Springer-Verlag, 2010. [Google Scholar]
  3. Cawley R. Determination of the Hamiltonian in the presence of constraints[J]. Physical Review Letters, 1979, 42(7): 413-416. [NASA ADS] [CrossRef] [Google Scholar]
  4. Mittelstaedt P. Klassische Mechanik [M]. Germany: Hochschultaschenbücher Verlag, 1970. [Google Scholar]
  5. Li Z. Symmetries in Constrained Canonical Systems [M]. Beijing: Science Press, 2002(Ch). [Google Scholar]
  6. Li Z P. Contrained Hamiltonian Systems and Their Symmetrical Properties [M]. Beijing: Beijing Polytechnic University Press, 1999(Ch). [Google Scholar]
  7. Li Z P. Classical and Quantal Dynamics of Contrained Systems and Their Symmetrical Properties [M]. Beijing: Beijing Polytechnic University Press, 1993(Ch). [Google Scholar]
  8. Dirac P A M. Generalized Hamiltonian dynamics[J]. Canadian Journal of Mathematics, 1950, 2: 129-148. [CrossRef] [Google Scholar]
  9. Noether A E. Invariante variationsprobleme [J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1918, KI: 235-257. [Google Scholar]
  10. Mei F X, Wu H B. Dynamics of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2009. [Google Scholar]
  11. Mei F X. Aanlytical Mechanics [M]. Beijing: Beijing Institute of Technology Press, 2013. [Google Scholar]
  12. Zhang Y, Cai J X. Noether theorem of herglotz-type for nonconservative Hamilton systems in event space[J]. Wuhan University Journal of Natural Sciences, 2021, 26(5): 376-382. [Google Scholar]
  13. Frederico G S F, Torres D F M. A formulation of Noether's theorem for fractional problems of the calculus of variations[J]. Journal of Mathematical Analysis and Applications, 2007, 334(2): 834-846. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. Frederico G S F, Torres D F M. Fractional conservation laws in optimal control theory[J]. Nonlinear Dynamics, 2008, 53(3): 215-222. [CrossRef] [MathSciNet] [Google Scholar]
  15. Frederico G S F, Torres D F M. Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense[J]. Reports on Mathematical Physics, 2013, 71(3): 291-304. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. Frederico G S F, Torres D F M. Fractional Noether's theorem in the Riesz-Caputo sense[J]. Applied Mathematics and Computation, 2010, 217(3): 1023-1033. [CrossRef] [MathSciNet] [Google Scholar]
  17. Frederico G S F. Fractional optimal control in the sense of Caputo and the fractional Noether's theorem[J]. International Mathematical Forum, 2008, 3(10): 479-493. [MathSciNet] [Google Scholar]
  18. Jia Q L, Wu H B, Mei F X. Noether symmetries and conserved quantities for fractional forced Birkhoffian systems[J]. Journal of Mathematical Analysis and Applications, 2016, 442(2): 782-795. [CrossRef] [MathSciNet] [Google Scholar]
  19. Zhou Y. The Fractional Pfaff-Birkhoff Variational Problem and Its Symmetries [D]. Suzhou: Suzhou University of Science and Technology, 2013(Ch). [Google Scholar]
  20. Zhou S, Fu H, Fu J L. Symmetry theories of Hamiltonian systems with fractional derivatives[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(10): 1847. [CrossRef] [Google Scholar]
  21. Malinowska A B. A formulation of the fractional Noether-type theorem for multidimensional Lagrangians[J]. Applied Mathematics Letters, 2012, 25(11): 1941-1946. [CrossRef] [MathSciNet] [Google Scholar]
  22. Atanacković T M, Konjik S, Pilipović S, et al. Variational problems with fractional derivatives: Invariance conditions and Noether's theorem [J]. Nonlinear Analysis Theory Methods & Applications, 2009, 71: 1504-1517. [CrossRef] [Google Scholar]
  23. Zhai X H, Zhang Y. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay [J]. Commun Nonlinear Sci Numer Simulat, 2016, 36: 81-97. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. Zhang Y, Zhai X H. Noether symmetries and conserved quantities for fractional Birkhoffian systems[J]. Nonlinear Dynamics, 2015, 81: 469-480. [CrossRef] [MathSciNet] [Google Scholar]
  25. Song C J, Zhang Y. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications [J]. Fract Calc Appl Anal, 2018, 21: 509-526. [CrossRef] [MathSciNet] [Google Scholar]
  26. Zhang S H, Chen B Y, Fu J L. Hamilton formalism and Noether symmetry for mechanico electrical systems with fractional derivatives [J]. Chin Phys B, 2012, 21: 100202. [CrossRef] [Google Scholar]
  27. Song C J. Noether symmetry for fractional Hamiltonian system [J]. Phys Lett A, 2019, 29: 125914. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  28. Jin S X, Zhang Y. Noether theorem for non-conservative systems with time delay in phase space based on fractional model[J]. Nonlinear Dynamics, 2015, 82: 663-676. [CrossRef] [MathSciNet] [Google Scholar]
  29. Jin S X, Zhang Y. Noether theorem for non-conservative Lagrange systems with time delay based on fractional model[J]. Nonlinear Dynamics, 2015, 79: 1169-1183. [CrossRef] [MathSciNet] [Google Scholar]
  30. Song C J, Agrawal O P. Hamiltonian formulation of systems described using fractional singular Lagrangian[J]. Acta Applicandae Mathematicae, 2021, 172(1): 9. [CrossRef] [MathSciNet] [Google Scholar]
  31. Podlubny I. Fractional Differential Equations [M]. San Diego: Academic Press, 1999. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.