Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 3, June 2023
|
|
---|---|---|
Page(s) | 217 - 220 | |
DOI | https://doi.org/10.1051/wujns/2023283217 | |
Published online | 13 July 2023 |
- Haberl C, Schuster F E. General affine isoperimetric inequalities [J]. Journal of Differential Geometry, 2008, 83(1): 1-26. [Google Scholar]
- Lutwak E, Yang D, Zhang G. Orlicz projection bodies [J]. Advances in Mathematics, 2010, 233(1): 220-242. [CrossRef] [MathSciNet] [Google Scholar]
- Schaftingen J V. Equivalence between Pólya Szegö and relative capacity inequalities under rearrangement [J]. Archivder Mathematik, 2014, 103(4): 367-379. [CrossRef] [Google Scholar]
- Schaftingen J V. Approximation of symmetrizations and symmetry of critical points [J]. Topological Methods in Nonlinear Analysis, 2006, 28(1): 61-85. [MathSciNet] [Google Scholar]
- Bianchi G, Klain D A, Lutwak E, et al. A countable set of directions is sufficient for Steiner symmetrization [J]. Advances in Applied Mathematics, 2011, 47(4): 869-873. [CrossRef] [MathSciNet] [Google Scholar]
- Burchard A, Fortier F. Random polarizations [J]. Advances in Mathematics, 2013, 234: 550-573. [CrossRef] [MathSciNet] [Google Scholar]
- Mani P. Random Steiner symmetrizations [J]. Studia Scientiarum Mathematicarum Hungarica, 1986, 21(3): 373-378. [MathSciNet] [Google Scholar]
- Bonnesen T, Fenchel W, Boron L, et al. Theory of Convex Bodies[M]. Berlin: Springer-Verlag, 1934. [Google Scholar]
- Apostol T. Introduction to Analytic Number Theory [M]. Berlin: Springer-Verlag, 1976. [Google Scholar]
- Bianchi G, Burchard A, Gronchi P, et al. Convergence in shape of Steiner symmetrizations [J]. Indiana University Mathematics Journal, 2012, 61(4): 1695-1710. [CrossRef] [MathSciNet] [Google Scholar]
- Hardy G H, Wright E M. An Introduction to the Theory of Numbers [M]. Fifth Edition. New York: The Clarendon Press, 1979. [Google Scholar]
- Berenyi H M, Fiddy M A. Application of homometric sets for beam manipulation [J]. Journal of the Optical Society of America A, 1986, 3(3): 373-375. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.