Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
|
|
---|---|---|
Page(s) | 579 - 588 | |
DOI | https://doi.org/10.1051/wujns/2024296579 | |
Published online | 07 January 2025 |
- Ali N D, Kumar D. Virtual inertia based SVPN sequence control scheme for voltage unbalance mitigation in coordination with DSM on a stand alone microgrid[J]. Electric Power Components and Systems, 2023: 1-25. DOI: 15325008.2023.2288703. [CrossRef] [Google Scholar]
- Behera S K, Panda A K, Naik N V. Adaptive active and reactive power control strategy for virtual synchronous generator[J]. International Journal of Circuit Theory and Applications, 2024, 52(6): 2635-2654. [Google Scholar]
- Dierkes S, Bennewitz F, Maercks M, et al. Impact of distributed reactive power control of renewable energy sources in smart grids on voltage stability of the power system[C]//2014 Electric Power Quality and Supply Reliability Conference (PQ). New York: IEEE, 2014: 119-126. [CrossRef] [Google Scholar]
- Farmer W J, Rix A J. Impact of continuous stochastic and spatially distributed perturbations on power system frequency stability[J]. Electric Power Systems Research, 2021, 201: 107536. [NASA ADS] [CrossRef] [Google Scholar]
- Liao H F, Zeng G H, Huang B, et al. Optimal control virtual inertia of optical storage microgrid based on improved sailfish algorithm[J]. Wuhan University Journal of Natural Sciences, 2022, 27(3): 218-230. [CrossRef] [EDP Sciences] [Google Scholar]
- Jain A, Pathak M K, Padhy N P. Conjoint enhancement of VSG dynamic output responses by disturbance-oriented adaptive parameters[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2079-2096. [CrossRef] [Google Scholar]
- Li J R, Li H Y, Lim M K, et al. Improved artificial jellyfish search algorithm: Virtual synchronous generator control strategy[J]. Engineering Optimization, 2024, 56(6): 854-873. [NASA ADS] [CrossRef] [Google Scholar]
- Du Y, Guerrero J M, Chang L C, et al. Modeling, analysis, and design of a frequency-droop-based virtual synchronous generator for microgrid applications[C]//2013 IEEE ECCE Asia Downunder. New York: IEEE, 2013: 643-649. [Google Scholar]
- Liu J, Miura Y, Ise T. Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3600-3611. [NASA ADS] [CrossRef] [Google Scholar]
- Wu H, Ruan X B, Yang D S, et al. Small-signal modeling and parameters design for virtual synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4292-4303. [CrossRef] [Google Scholar]
- Liu D, Jiang K Z, Ji X T, et al. Improved VSG strategy of grid-forming inverters for supporting inertia and damping[J]. Frontiers in Energy Research, 2024, 11: 1331024. [CrossRef] [Google Scholar]
- Li D D, Zhu Q W, Lin S F, et al. A self-adaptive inertia and damping combination control of VSG to support frequency stability[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 397-398. [NASA ADS] [CrossRef] [Google Scholar]
- Wang L, Zhou H, Hu X K, et al. Adaptive inertia and damping coordination (AIDC) control for grid-forming VSG to improve transient stability[J]. Electronics, 2023, 12(9): 2060. [CrossRef] [Google Scholar]
- Li J, Wen B Y, Wang H Y. Adaptive virtual inertia control strategy of VSG for micro-grid based on improved Bang-Bang control strategy[J]. IEEE Access, 2019, 7: 39509-39514. [CrossRef] [Google Scholar]
- Deng X M, Lu J N. Bang Bang control of unified chaotic system[J]. Wuhan Univ J of Nat Sci, 2003, 8(1): 311-315. [CrossRef] [MathSciNet] [Google Scholar]
- Elwakil M M, El Zoghaby H M, Sharaf S M, et al. Adaptive virtual synchronous generator control using optimized Bang-Bang for Islanded microgrid stability improvement[J]. Protection and Control of Modern Power Systems, 2023, 8(1): 57-78. [NASA ADS] [CrossRef] [Google Scholar]
- Mentesidi K, Garde R, Aguado M, et al. Implementation of a fuzzy logic controller for virtual inertia emulation[C]//2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST). New York: IEEE, 2015: 606-611. [CrossRef] [Google Scholar]
- Shi R L, Zhang X, Hu C, et al. Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(3): 482-494. [Google Scholar]
- Tian J B, Zeng G H, Zhao J B, et al. A data-driven modeling method of virtual synchronous generator based on LSTM neural network[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 5428-5439. [CrossRef] [Google Scholar]
- Feng Z X, Ge X, Zhou Y J, et al. A power load prediction by LSTM model based on the double attention mechanism for hospital building[J]. Wuhan Univ J of Nat Sci, 2023, 28(3): 223-236. [CrossRef] [EDP Sciences] [Google Scholar]
- Yao F J, Zhao J B, Li X J, et al. RBF neural network based virtual synchronous generator control with improved frequency stability[J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 4014-4024. [CrossRef] [Google Scholar]
- LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [CrossRef] [Google Scholar]
- Zhi Z, Liu L S, Liu D T, et al. Fault detection of the harmonic reducer based on CNN-LSTM with a novel denoising algorithm[J]. IEEE Sensors Journal, 2022, 22(3): 2572-2581. [NASA ADS] [CrossRef] [Google Scholar]
- Liu J, Yao W, Wen J Y, et al. A wind farm virtual inertia compensation strategy based on energy storage system[J]. Proceedings of the CSEE, 2015, 35(7):1596-1605(Ch). [Google Scholar]
- Li T Y, Wen B Y, Wang H Y. Adaptive parameter control strategy of virtual synchronous generator based on frequency prediction[J]. Journal of Fuzhou University, 2020,48(6):720-726(Ch). [Google Scholar]
- Yang Y, Mei F, Zhang C Y, et al. A novel pulse-source-based method for measuring transfer impedance of high-frequency current sensor[J]. Electric Power Automation Equipment, 2019, 39(3): 125-131(Ch). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.