Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
|
|
---|---|---|
Page(s) | 572 - 578 | |
DOI | https://doi.org/10.1051/wujns/2024296572 | |
Published online | 07 January 2025 |
- Medak B, Tret'yakov A A. On solution existence for a singular nonlinear Burgers equation with small parameter and p-regularity theory[J]. Doklady Mathematics, 2023, 108(1): 243-247. [Google Scholar]
- Li Q H, Chai Z H, Shi B C. Lattice Boltzmann models for two-dimensional coupled Burgers' equations[J]. Computers & Mathematics with Applications, 2018, 75(3): 864-875. [CrossRef] [MathSciNet] [Google Scholar]
- Alhefthi R K, Eltayeb H. The solution of coupled Burgers' equation by G-Laplace transform[J]. Symmetry, 2023, 15(9): 1764. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang Z Q, Wang F Z, Zhang J. The space-time meshless methods for the solution of one-dimensional Klein-Gordon equations[J]. Wuhan University Journal of Natural Sciences, 2022, 27(4): 313-320. [CrossRef] [EDP Sciences] [Google Scholar]
- Alqahtani A, Kumar V. Soliton solutions to the time-dependent coupled KdV-Burgers' equation[J]. Advances in Difference Equations, 2019, 2019(1): 493. [CrossRef] [MathSciNet] [Google Scholar]
- Zheng H, Zhang C Z, Wang Y S, et al. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals[J]. Journal of Computational Physics, 2016, 305: 997-1014. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wang L H, Qian Z H. A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113303. [CrossRef] [MathSciNet] [Google Scholar]
- Lin J, Zhao Y X, Watson D, et al. The radial basis function differential quadrature method with ghost points[J]. Mathematics and Computers in Simulation, 2020, 173: 105-114. [CrossRef] [MathSciNet] [Google Scholar]
- Siraj-ul-Islam, Šarler B, Vertnik R, et al. Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers' equations[J]. Applied Mathematical Modelling, 2012, 36(3): 1148-1160. [CrossRef] [MathSciNet] [Google Scholar]
- Ahmad I, Ahsan M, Hussain I, et al. Numerical simulation of PDEs by local meshless differential quadrature collocation method[J]. Symmetry, 2019, 11(3): 394. [NASA ADS] [CrossRef] [Google Scholar]
- Abdou M A, Soliman A A. Variational iteration method for solving Burger's and coupled Burger's equations[J]. Journal of Computational and Applied Mathematics, 2005, 181(2): 245-251. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wazwaz A M. Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(7): 2962-2970. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Jaradat H M. Two-mode coupled Burgers equation: Multiple-kink solutions and other exact solutions[J]. Alexandria Engineering Journal, 2018, 57(3): 2151-2155. [CrossRef] [Google Scholar]
- Kutluay S, Ucar Y. Numerical solutions of the coupled Burgers' equation by the Galerkin quadratic B-spline finite element method[J]. Mathematical Methods in the Applied Sciences, 2013, 36(17): 2403-2415. [CrossRef] [MathSciNet] [Google Scholar]
- Başhan A L. A numerical treatment of the coupled viscous Burgers' equation in the presence of very large Reynolds number[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 545: 123755. [CrossRef] [MathSciNet] [Google Scholar]
- Wang F Z, Shao M Y, Li J L, et al. A space-time domain RBF method for 2D wave equations[J]. Frontiers in Physics, 2023, 11: 1241196. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang J, Wang F Z, Nadeem S, et al. Simulation of linear and nonlinear advection-diffusion problems by the direct radial basis function collocation method[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105775. [Google Scholar]
- Zhu H Q, Shu H Z, Ding M Y. Numerical solutions of two-dimensional Burgers' equations by discrete Adomian decomposition method[J]. Computers & Mathematics with Applications, 2010, 60(3): 840-848. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.