Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
Page(s) 563 - 571
DOI https://doi.org/10.1051/wujns/2024296563
Published online 07 January 2025
  1. Korzhik V P, Voss H J. On the number of nonisomorphic orientable regular embeddings of complete graphs[J]. Journal of Combinatorial Theory, Series B, 2001, 81(1): 58-76. [Google Scholar]
  2. Liu Y P. Embeddability in Graphs[M]. Dordrecht: Springer-Verlag, 1996. [Google Scholar]
  3. Xuong N H. How to determine the maximum genus of a graph[J]. Journal of Combinatorial Theory, Series B, 1979, 26(2): 217-225. [Google Scholar]
  4. Liu Y P. The maximum orientable genus of some kinds of graph[J]. Acta Math Sinica, 1981, 24: 817-832. [MathSciNet] [Google Scholar]
  5. Liu Y P. The maximum orientable genus of a graph[J]. Scientia Sinica, 1979, 9(S1): 192-201. [MathSciNet] [Google Scholar]
  6. Škoviera M. The maximum genus of graphs of diameter two[J]. Discrete Mathematics, 1991, 87(2): 175-180. [CrossRef] [MathSciNet] [Google Scholar]
  7. Ringel G. Map Color Theorem[M]. Berlin: Springer-Verlag, 1974. [CrossRef] [Google Scholar]
  8. Bonnington C P, Grannell M J, Griggs T S, et al. Exponential families of non-isomorphic triangulations of complete graphs[J]. Journal of Combinatorial Theory, Series B, 2000, 78(2): 169-184. [CrossRef] [MathSciNet] [Google Scholar]
  9. Goddyn L, Richter R B, Širáň J. Triangular embeddings of complete graphs from graceful labellings of paths[J]. Journal of Combinatorial Theory, Series B, 2007, 97(6): 964-970. [Google Scholar]
  10. Korzhik V P, Voss H J. Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs[J]. Journal of Combinatorial Theory, Series B, 2004, 91(2): 253-287. [Google Scholar]
  11. Lawrencenko S, Negami S, White A T. Three nonisomorphic triangulations of an orientable surface with the same complete graph[J]. Discrete Mathematics, 1994, 135(1/2/3): 367-369. [CrossRef] [MathSciNet] [Google Scholar]
  12. Korzhik V P. Generating nonisomorphic quadrangular embeddings of a complete graph[J]. Journal of Graph Theory, 2013, 74(2): 133-142. [CrossRef] [MathSciNet] [Google Scholar]
  13. Hartsfield N, Ringel G. Minimal quadrangulations of orientable surfaces[J]. Journal of Combinatorial Theory, Series B, 1989, 46(1): 84-95. [CrossRef] [MathSciNet] [Google Scholar]
  14. Hartsfield N, Ringel G. Minimal quadrangulations of nonorientable surfaces[J]. Journal of Combinatorial Theory, Series A, 1989, 50(2): 186-195. [Google Scholar]
  15. Liu W Z, Lawrencenko S, Chen B F, et al. Quadrangular embeddings of complete graphs and the even map color theorem[J]. Journal of Combinatorial Theory, Series B, 2019, 139: 1-26. [CrossRef] [MathSciNet] [Google Scholar]
  16. Liu W Z, Ellingham M N, Ye D. Minimal quadrangulations of surfaces[J]. Journal of Combinatorial Theory, Series B, 2022, 157: 235-262. [Google Scholar]
  17. Mohar B, Thomassen C. Graphs on Surfaces[M]. Baltimore: The Johns Hopkins University Press, 2001. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.