Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 1, February 2025
|
|
---|---|---|
Page(s) | 91 - 102 | |
DOI | https://doi.org/10.1051/wujns/2025301091 | |
Published online | 12 March 2025 |
- Choi Y, Lee M Y, Kim T H. Evaluating total organic carbon as an indicator for organic pollutant management in the marine environment: A case study on wastewater treatment plant effluent input into the coastal ocean[J]. The Science of the Total Environment, 2024, 919: 170704. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yu J X, Lu H J, Zhu L Z. Mutation-driven resistance development in wastewater E. coli upon low-level cephalosporins: Pharmacophore contribution and novel mechanism[J]. Water Research, 2024, 252: 121235. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jentzsch F, Kümmerer K, Olsson O. Status quo on identified transformation products of organic ultraviolet filters and their persistence[J]. International Journal of Cosmetic Science, 2023, 45(Suppl 1): 101-126. [CrossRef] [PubMed] [Google Scholar]
- Gou N, Yang W Y, Gao S, et al. Incorporation of ultrathin porous metal-free graphite carbon nitride nanosheets in polyvinyl chloride for efficient photodegradation[J]. Journal of Hazardous Materials, 2023, 447: 130795. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Qiu H X, Hu J W, Zhang R, et al. The photocatalytic degradation of diesel by solar light-driven floating BiOI/EP composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123996. [CrossRef] [Google Scholar]
- Huang Y J, Yu J X, Wu Z Y, et al. All-inorganic lead halide perovskites for photocatalysis: A review[J]. RSC Advances, 2024, 14(7): 4946-4965. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Di J, Jiang W, Liu Z. Charge-polarized metal site pairs trigger new opportunities in photocatalysis[J]. Materials Today, 2024, 72: 377-391. [CrossRef] [Google Scholar]
- Ni Z N, Wang Q W, Guo Y X, et al. Research progress of tungsten oxide-based catalysts in photocatalytic reactions[J]. Catalysts, 2023, 13(3): 579. [CrossRef] [Google Scholar]
- Zhang H, Wang S Y, Tian J S, et al. Photocatalytic hydrogen peroxide production from seawater over graphitic carbon nitride supported titanium dioxide quantum dots[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112290. [CrossRef] [Google Scholar]
- Ullah F, Mohamed N M, Ghani U, et al. First principle DFT + U calculations for the optoelectronic properties of Cu and C-Cu Co-doped TiO2 anatase model[J]. Asian Journal of Chemistry, 2022, 34(7): 1863-1868. [CrossRef] [Google Scholar]
- Kim H I, Kim K, Park S, et al. Titanium dioxide surface modified with both palladium and fluoride as an efficient photocatalyst for the degradation of urea[J]. Separation and Purification Technology, 2019, 209: 580-587. [CrossRef] [Google Scholar]
- Luan N H, Chang C F. Fabrication of Ag3PO4/N-doped TiO2 nanotubes heterojunction photocatalysts for visible-light-driven photocatalysis[J]. Chemosphere, 2024, 350: 141022. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bezu Z, Taddesse A M, Diaz I. Natural zeolite supported g-C3N4/ZnO/Ag3PO4 composite: A tandem n-n heterojunction for simultaneous photodegradation of dyes under visible and solar irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 449: 115369. [NASA ADS] [CrossRef] [Google Scholar]
- Yu H B, Wang Y L, Wang X H. Synthesis of a Z-scheme photocatalyst (P-doped g-C3N4/Bi3+-doped Ag3PO4) and its photocatalytic performance[J]. Journal of Industrial and Engineering Chemistry, 2024, 130: 436-445. [CrossRef] [Google Scholar]
- Anantharamaiah P N, Manasa K S, Sunil Kumar Y C. Fabrication of magnetically recoverable and reusable MgFe2O4/Ag3PO4 composite for catalytic reduction of 4-nitrophenol[J]. Solid State Sciences, 2020, 106: 106302. [CrossRef] [Google Scholar]
- Zhou T H, Zhang G Z, Yang H, et al. Fabrication of Ag3PO4/GO/NiFe2O4 composites with highly efficient and stable visible-light-driven photocatalytic degradation of rhodamine B[J]. RSC Advances, 2018, 8(49): 28179-28188. [CrossRef] [PubMed] [Google Scholar]
- Hu J, Chen Y, Zhang Y, et al. Fabrication of g-C3N4/Ag/CoFe1.95Eu0.05O4 heterojunctions with enhanced photocatalytic degradation activity[J]. Materials Letters, 2024, 354: 135245. [NASA ADS] [CrossRef] [Google Scholar]
- Chen S K, Jiang D C, Zeng G, et al. Dysprosium doped CoFe2O4 with enhanced magnetic property and photodegradation activity of methyl orange[J]. Materials Letters, 2021, 284: 128966. [NASA ADS] [CrossRef] [Google Scholar]
- Dong L S, Wang Z G, Mi C, et al. Defect-rich hierarchical porous spinel MFe2O4 (M = Ni, Co, Fe, Mn) as high-performance anode for lithium ion batteries[J]. Materials Today Chemistry, 2024, 35: 101853. [CrossRef] [Google Scholar]
- Temerbulatova N T, Tsvetkov M P, Karaivanov D K, et al. Rare earths doped ferrites, characterized by Time Differential γγ Perturbed Angle Correlations method[J]. Journal of Solid State Chemistry, 2019, 277: 281-289. [NASA ADS] [CrossRef] [Google Scholar]
- Zhu H X, Ji Y K, Chen L F, et al. Pt nanowire-anchored dodecahedral Ag3PO4{110} constructed for significant enhancement of photocatalytic activity and anti-photocorrosion properties: Spatial separation of charge carriers and photogenerated electron utilization[J]. Catalysts, 2020, 10(2): 206. [CrossRef] [Google Scholar]
- Jia J K, Huang W X, Feng C S, et al. Fabrication of g-C3N4/Ag3PO4-H2O2 heterojunction system with enhanced visible-light photocatalytic activity and mechanism insight[J]. Journal of Alloys and Compounds, 2019, 790: 616-625. [CrossRef] [Google Scholar]
- Long J L, Xu Y M, Huang W C, et al. Dual-mode optical thermometry based on La2MgTiO6: Mn4+, Dy3+ double perovskite phosphors[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(22): 1613. [NASA ADS] [CrossRef] [Google Scholar]
- Peng H H, Yang J C E, Fu M L, et al. Nanocrystalline ferrihydrite activated peroxymonosulfate for butyl-4-hydroxybenzoate oxidation: Performance and mechanism[J]. Chemosphere, 2020, 242: 125140. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kim J, Lim C, Lee D M, et al. Effects of oxygen species in perovskite catalysts on the partial oxidation of methane in a low temperature plasma bed[J]. Journal of Catalysis, 2023, 427: 115116. [CrossRef] [Google Scholar]
- Madona J, Sridevi C, Indumathi N, et al. A novel carbon doped CeO2/g-C3N4 heterostructure for disinfection of microorganisms and degradation of malachite green and amoxicillin under sunlight[J]. Surfaces and Interfaces, 2024, 44: 103803. [CrossRef] [Google Scholar]
- Matussin S N, Khan M M. Phytogenic fabrication of CeO2@SnO2 heterojunction nanostructures for antioxidant studies[J]. Chemical Papers, 2022, 76(4): 2071-2084. [NASA ADS] [CrossRef] [Google Scholar]
- Xu Y, Zhang X W, Zhang Y, et al. Nano flake Ag3PO4 enhanced photocatalytic activity of bisphenol A under visible light irradiation[J]. Colloid and Interface Science Communications, 2020, 37: 100277. [CrossRef] [Google Scholar]
- Zhu P F, Chen Y J, Duan M, et al. Structure and properties of Ag3PO4/diatomite photocatalysts for the degradation of organic dyes under visible light irradiation[J]. Powder Technology, 2018, 336: 230-239. [CrossRef] [Google Scholar]
- Zheng C X, Yang H. Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 9291-9300. [CrossRef] [Google Scholar]
- Bahrololoomi A, Bilan H K, Podlaha E J. Electrodeposited Ni-Fe onto glassy carbon for the detection of methylene blue[J]. Journal of the Electrochemical Society, 2022, 169(1): 012501. [NASA ADS] [CrossRef] [Google Scholar]
- Yang T, Deng P K, Wang L L, et al. Simultaneous photocatalytic oxygen production and hexavalent chromium reduction in Ag3PO4/C3N4 S-scheme heterojunction[J]. Chinese Journal of Structural Chemistry, 2022, 41(6): 23-38. [Google Scholar]
- Huang Y, Zhang X Y, Zhu G X, et al. Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism[J]. Separation and Purification Technology, 2019, 215: 490-499. [CrossRef] [Google Scholar]
- Khosravani Goshtasb Z, Mehdi Sabzehmeidani M, Ghaedi M, et al. Magnetic Ag3PO4/Ag2CrO4/Fe/Fe3O4 quaternary composite for improved solar-driven photocatalytic degradation of cationic dyes under natural solar radiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428: 113856. [NASA ADS] [CrossRef] [Google Scholar]
- Ma X Q, Li X B, Chen Z, et al. BiOBr/ZnMoO4 step-scheme heterojunction: Construction and photocatalytic degradation properties[J]. Journal of Inorganic Materials, 2023, 38(1): 62. [CrossRef] [Google Scholar]
- Li R, Liu J X, Duo F F, et al. Facile hydrolysis synthesis of novel Bi12O17Br2 photocatalyst with superior reduction ability and photocatalytic activity[J]. Materials Letters, 2018, 224: 5-8. [NASA ADS] [CrossRef] [Google Scholar]
- Song T, Zhang X, Che Q D, et al. Heterojunction nanoarchitectonics with SnS2/g-C3N4 S-scheme toward enhanced photooxidation and photoreduction[J]. Journal of Industrial and Engineering Chemistry, 2022, 113: 389-400. [CrossRef] [Google Scholar]
- Li X B, Luo Q N, Han L, et al. Enhanced photocatalytic degradation and H2 evolution performance of N CDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly[J]. Journal of Materials Science & Technology, 2022, 114: 222-232. [CrossRef] [Google Scholar]
- Feng H G, Zhang C M, Luo M H, et al. A dual S-scheme TiO2@In2Se3@Ag3PO4 heterojunction for efficient photocatalytic CO2 reduction[J]. Nanoscale, 2022, 14(43): 16303-16313. [CrossRef] [PubMed] [Google Scholar]
- Zhu Y K, Zhuang Y, Wang L L, et al. Constructing 0D/1D Ag3PO4/TiO2 S-scheme heterojunction for efficient photodegradation and oxygen evolution[J]. Chinese Journal of Catalysis, 2022, 43(10): 2558-2568. [CrossRef] [Google Scholar]
- Luo C Y, Lin Y, Zhang Y P, et al. S-scheme heterojunction between MOFs and Ag3PO4 leads to efficient photodegradation of antibiotics in swine wastewater[J]. Separation and Purification Technology, 2023, 320: 124052. [CrossRef] [Google Scholar]
- Yao Y, Shen Q H, Chen Q F, et al. Ag/AgX (X = Cl, Br, or I) nanocomposite loaded on Ag3PO4 tetrapods as a photocatalyst for the degradation of contaminants[J]. ACS Applied Nano Materials, 2024, 7(4): 3711-3723. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.