Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 2, April 2025
|
|
---|---|---|
Page(s) | 195 - 204 | |
DOI | https://doi.org/10.1051/wujns/2025302195 | |
Published online | 16 May 2025 |
- Chai S, Fei X H, Wang Y L, et al. Deep learning-based lung medical image recognition[J]. International Journal of Innovative Research in Computer Science and Technology, 2024, 12(3): 100-105. [Google Scholar]
- Yadav S P, Jindal M, Rani P, et al. An improved deep learning-based optimal object detection system from images[J]. Multimedia Tools and Applications, 2024, 83(10): 30045-30072. [Google Scholar]
- Kheddar H, Hemis M, Himeur Y. Automatic speech recognition using advanced deep learning approaches: A survey[J]. Information Fusion, 2024, 109: 102422. [Google Scholar]
- Praful Bharadiya J. A comprehensive survey of deep learning techniques natural language processing[J]. European Journal of Technology, 2023, 7(1): 58-66. [Google Scholar]
- Snoun A, Bouchrika T, Jemai O. Deep-learning-based human activity recognition for Alzheimer's patients' daily life activities assistance[J]. Neural Computing and Applications, 2023, 35(2): 1777-1802. [Google Scholar]
- Chen K X, Zhang D L, Yao L N, et al. Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities[J]. ACM Computing Surveys, 2021, 54(4): 1-40. [Google Scholar]
- Tong Y, Zhu H. Hyper-parameter optimization: A review of algorithms and applications[EB/OL]. [2023-12-01]. https://arxiv.org/abs/2003.05689v1. [Google Scholar]
- Loussaief S, Abdelkrim A. Convolutional neural network hyper-parameters optimization based on genetic algorithms[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(10): 252-266. [Google Scholar]
- Foysal M F A, Sultana N, Rimi T A, et al. Convolutional neural network hyper-parameter optimization using particle swarm optimization[C]//Emerging Technologies in Data Mining and Information Security. Singapore: Springer Nature Singapore, 2021: 363-373. [Google Scholar]
- Wang Y L, Zhang H X, Zhang G W. W cPSO-CNN: An efficient PSO-based algorithm for fine-tuning hyper-parameters of convolutional neural networks[J]. Swarm and Evolutionary Computation, 2019, 49: 114-123. [Google Scholar]
- Nikbakht S, Anitescu C, Rabczuk T. Optimizing the neural network hyperparameters utilizing genetic algorithm[J]. Journal of Zhejiang University:Science A, 2021, 22(6): 407-426. [Google Scholar]
- Akiba T, Sano S, Yanase T, et al. Optuna: A next-generation hyper-parameter optimization framework[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 2623-2631. [Google Scholar]
- Ekundayo I. OPTUNA Optimization Based CNN-LSTM Model for Predicting Electric Power Consumption[D]. Dublin: National College of Ireland, 2020. [Google Scholar]
- Nishitsuji Y, Nasseri J. LSTM with forget gates optimized by Optuna for lithofacies prediction[EB/OL]. [2022-12-01]. https://research.tudelft.nl/en/publications/lstm-with-forget-gates-optimized-by-optuna-for-lithofacies-predic. [Google Scholar]
- Civicioglu P, Besdok E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms[J]. Artificial Intelligence Review, 2013, 39(4): 315-346. [Google Scholar]
- Yang X S, Deb S. Cuckoo search: Recent advances and applications[J]. Neural Computing and Applications, 2014, 24(1): 169-174. [Google Scholar]
- Tong Y, Yu B. Research on hyper-parameter optimization of activity recognition algorithm based on improved cuckoo search[J]. Entropy, 2022, 24(6): 845. [Google Scholar]
- Kim P. Convolutional neural network[C]//MATLAB Deep Learning: with Machine Learning, Neural Networks and Artificial Intelligence. Berkeley: Apress, 2017: 121-147. [Google Scholar]
- Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [CrossRef] [Google Scholar]
- Liu W B, Wang Z D, Liu X H, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26. [CrossRef] [Google Scholar]
- Wang J J, Wen G L, Yang S P, et al. Remaining useful life estimation in prognostics using deep bidirectional LSTM neural network[C]//2018 Prognostics and System Health Management Conference (PHM-Chongqing). New York: IEEE, 2018: 1037-1042. [Google Scholar]
- Van Houdt G, Mosquera C, Nápoles G. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8): 5929-5955. [Google Scholar]
- Ordóñez F J, Roggen D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1): 115. [Google Scholar]
- Cook D J, Schmitter-Edgecombe M. Assessing the quality of activities in a smart environment[J]. Methods of Information in Medicine, 2009, 48(5): 480-485. [Google Scholar]
- Van Kasteren T, Noulas A, Englebienne G, et al. Accurate activity recognition in a home setting[C]//Proceedings of the 10th International Conference on Ubiquitous Computing. New York: ACM, 2008: 1-9. [Google Scholar]
- Tabbakha N E, Ooi C P, Tan W H, et al. A wearable device for machine learning based elderly's activity tracking and indoor location system[J]. Bulletin of Electrical Engineering and Informatics, 2021, 10(2): 927-939. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.