Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 2, April 2025
Page(s) 103 - 110
DOI https://doi.org/10.1051/wujns/2025302103
Published online 16 May 2025

© Wuhan University 2025

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

Cauchy problem of the two-dimensional bipolar Navier-Stokes-Poisson (BNSP) system has the following formulation:

{ ρ t + d i v m = 0 , m t + d i v ( m m ρ ) + P 1 ( ρ ) = μ 1 Δ ( m ρ ) + μ 2 d i v ( m ρ ) + Z ρ e ϕ , n t + d i v ω = 0 , ω t + d i v ( ω ω n ) + P 2 ( n ) = μ ¯ 1 Δ ( ω n ) + μ ¯ 2 d i v ( ω n ) - n e ϕ , Δ ϕ = 4 π e ( Z ρ - n ) ,   l i m | x | ϕ = 0 , ( ρ , m , n , ω ) ( x , 0 ) = ( ρ 0 , m 0 , n 0 , ω 0 ) ( x ) ,    ( x , t ) ( R 2 × R + ) . (1)

Here the unknown functions ρ, n represent the density of ions and electrons, m(x,t), ω(x,t) are the momentum of ions and electrons, ϕ is the electrostatic potential. and div are the usual gradient and the divergence operator. μ1, μ2, μ¯1, μ¯2 are constant positive viscosity coefficients. Pressure functions P1(ρ), P2(n) have positive derivatives. The electrons have charge -e and the ions have charge Ze where Z, e are positive constants. For simplicity, we set e=1.

The BNSP system is used to describe the dynamics of two separate compressible fluids of ions and electrons with their self-consistent electromagnetic field. It is a hyperbolic parabolic coupling system. Because of its physical importance and mathematical challenges, there were extensive studies on the asymptotic and global existence of the BNSP system. For example, Refs. [1-5] dealt with different forms of BNSP, and got the global existence of classical solution and its decay. But most results are about space dimension n3. There are few results about space n=2. This paper studies L2 decay estimate of a linearized two-dimensional BNSP system.

Throughout this paper, Lp(U) denotes the Lebesgue integrable space function, Hp(U) means the Sobolev space function. C and Ci denote some general positive constants.

1 Reformulation and Linearization

Suppose the initial value (ρ0,m0,n0,ω0)(x) of (1) tends to equilibrium state (ρ¯Z,0,ρ¯,0) as |x|. Set ρ˜=Zρ-ρ¯,m˜=m-0, n˜=n-ρ¯, ω˜=ω. Then (1) can be rewritten as

{ ρ ˜ t Z + d i v m ˜ = 0 , m ˜ t + d i v ( m ˜ m ˜ ρ ˜ + ρ ¯ Z ) + P 1 ( ρ ˜ + ρ ¯ Z ) = μ 1 Δ ( m ˜ ρ ˜ + ρ ¯ Z ) + μ 2 d i v ( m ˜ ρ ˜ + ρ ¯ Z ) + Z ρ ˜ + ρ ¯ Z ϕ , n ˜ t + d i v ω ˜ = 0 , ω ˜ t + d i v ( ω ˜ ω ˜ n ˜ + ρ ¯ ) + P 2 ( n ˜ + ρ ¯ ) = μ ¯ 1 Δ ( ω ˜ n ˜ + ρ ¯ ) + μ ¯ 2 d i v ( ω ˜ n ˜ + ρ ¯ ) - ( n ˜ + ρ ¯ ) ϕ , Δ ϕ = 4 π ( ρ ˜ - n ˜ ) . (2)

System (2) can be reformulated as a linear part plus a nonlinear part.

{ ρ ˜ t + Z d i v m ˜ = 0 , m ˜ t + P 1 ' ( ρ ¯ Z ) ( ρ ˜ Z ) - μ 1 Z 1 ρ ¯ Δ m ˜ - μ 2 Z 1 ρ ¯ d i v m ˜ - ρ ¯ ϕ = F 1 , n ˜ t + d i v ω ˜ = 0 , ω ˜ t + P 2 ' ( ρ ¯ ) n ˜ - μ ¯ 1 ρ ¯ Δ ω ˜ - μ ¯ 2 ρ ¯ d i v ω ˜ + ρ ¯ ϕ = F 2 . (3)

The left side of (3) is the linearized part of (2) near (ρ¯Z,0,ρ¯,0), and the right side of (3) is the nonlinearized part. For simplicity, we denote the perturbation ρ˜, m˜, n˜, ω˜ as ρZ,m,n,ω, so the linearized system of (1) near the state (ρ¯Z,0,ρ¯,0) is

{ ρ t + d i v m = 0 , m t + c 1 2 ρ - μ 1 Z ρ ¯ Δ m - μ 2 Z ρ ¯ d i v m - ρ ¯ ϕ = 0 , n t + d i v ω = 0 , ω t + c 2 2 n - μ ¯ 1 ρ ¯ Δ ω - μ ¯ 2 ρ ¯ d i v ω + ρ ¯ ϕ = 0 , Δ ϕ = 4 π ( ρ - n ) , ( ρ , m , n , ω ) ( x , 0 ) = ( ρ 0 , m 0 , n 0 , ω 0 ) ( x ) ,    ( x , t ) ( R 2 × R + ) , (4)

where c12=P1'(ρ¯Z), c22=P2'(ρ¯).

Our final result in this paper is the following theorem.

Theorem 1   If the initial data ρ0-ρ¯Z, n0-ρ¯, m0, w0L1H2,we have the following estimate:

ρ + n - ρ ¯ Z - ρ ¯ L 2 + m + ω L 2 C ( 1 + t ) - 1 2 ( ρ 0 + n 0 - ρ ¯ Z - ρ ¯ L 1 + ρ 0 + n 0 - ρ ¯ Z - ρ ¯ L 2 ) + C ( 1 + t ) - 1 2 ( m 20 L 1 + m 20 L 2 )

m i n ( ρ + n - ρ ¯ Z - ρ ¯ L 2 ,   m + ω L 2 ) C ( 1 + t ) - 1 2

If |ρ^0-n^0||ξ|εC1|ξ|ε1, for any positive ε1, we have m-ωL2Ct-ε1+C(1+t)-12(m0-ω0L1+m0-ω0H2)

ρ - ρ ¯ Z - n + ρ ¯ L 2 C ( 1 + t ) - 1 2 ( ρ 0 - ρ ¯ Z - n 0 + ρ ¯ L 1 + ρ 0 - ρ ¯ Z - n 0 + ρ ¯ H 2 )

Further on, if |ρ^0-n^0||ξ|εC2|ξ|ε1, for any positive ε1, we have m-ωL2C3t-ε1, ρ-ρ¯Z-n+ρ¯L2C3(1+t)-12.

Remark 1   From Theorem 1, the perturbation of the sum of density and momentum decay at the rate (1+t)-12, the perturbation of the difference of density decay at the rate (1+t)-12, but the difference of momentum hardly decay at t because of the influence of the electronic field. Due to the low decay rate, it is difficult to go on the global existence of the system.

We want to separate system (4) into several small sets of equations. Considering the fifth equation of (4), we denote ρ1=ρ+n, ρ2=ρ-n, m1=m+ω, m2=m-ω, (4) is equal to the following system:

{ ρ 1 t + d i v m 1 = 0 , m 1 t + c 1 2 + c 2 2 2 ρ 1 + c 1 2 - c 2 2 2 ρ 2 - 1 2 ( μ 1 Z + μ ¯ 1 ρ ¯ ) Δ m 1 - 1 2 ( μ 1 Z - μ ¯ 1 ρ ¯ ) Δ m 2 - 1 2 ( μ 2 Z + μ ¯ 2 ρ ¯ ) d i v m 1 - 1 2 ( μ 2 Z - μ ¯ 2 ρ ¯ ) d i v m 2 = 0 , ρ 2 t + d i v m 2 = 0 , m 2 t + c 1 2 - c 2 2 2 ρ 1 + c 1 2 + c 2 2 2 ρ 2 - 1 2 ( μ 1 Z - μ ¯ 1 ρ ¯ ) Δ m 1 - 1 2 ( μ 1 Z + μ ¯ 1 ρ ¯ ) Δ m 2 - 1 2 ( μ 2 Z - μ ¯ 2 ρ ¯ ) d i v m 1 - 1 2 ( μ 2 Z + μ ¯ 2 ρ ¯ ) d i v m 2 - 2 ρ ¯ Δ ϕ = 0 , Δ ϕ = 4 π ρ 2 . (5)

For simplicity, we suppose c12=c22, μ1Z=μ¯1, μ2Z=μ¯2, denote c2=c12+c222, γ1=12(μ1Z+μ¯1ρ¯), γ2=12(μ2Z+μ¯2ρ¯). System (5) can be separated into the following two systems

{ ρ 1 t + d i v m 1 = 0 , m 1 t + c 2 ρ 1 - γ 1 Δ m 1 - γ 2 d i v m 1 = 0 . (6)

{ ρ 2 t + d i v m 2 = 0 , m 2 t + c 2 ρ 2 - γ 1 Δ m 2 - γ 2 d i v m 2 - 2 ρ ¯ ϕ = 0 , Δ ϕ = 4 π ρ 2 . (7)

We find that (6) is a linearized isentropic Navier-Stokes (NS) system while (7) is a linearized unipolar Navier-Stokes-Poisson (NSP) system. We study them respectively in the next step.

2 L 2 Decay of Linearized NS System

If the initial data of (6) is (ρ1,m1)(x,0)=(ρ10,m10)(x), according to (1.3) in Ref. [6], we have

( ρ ^ 1 m ^ 1 ) = ( λ + e λ - t - λ - e λ + t λ + - λ - e λ - t - e λ + t λ + - λ - i ξ τ - i c 2 ξ e λ - t - e λ + t λ + - λ - λ + e λ - t - λ - e λ + t λ + - λ - ξ ξ τ | ξ | 2 + e - γ 1 | ξ | 2 t ( I - ξ ξ τ | ξ | 2 ) ) ( ρ ^ 10 m ^ 10 ) (8)

where I is a 2×2 unit matrix,

λ + = - ( γ 1 + γ 2 ) | ξ | 2 + ( γ 1 + γ 2 ) 2 | ξ | 4 - 4 c 2 | ξ | 2 2

λ - = - ( γ 1 + γ 2 ) | ξ | 2 - ( γ 1 + γ 2 ) 2 | ξ | 4 - 4 c 2 | ξ | 2 2 (9)

From (9), when |ξ| is small enough, there is no problem with the decay estimate for the Green function; when |ξ| is bounded and away from zero, λ+-λ- may tend to zero, so we need to consider the integrability of the Green function; when |ξ| is large enough, for example, ξλ+-λ-=O(1|ξ|) has no L2 bounds. Next, we will divide frequency into three different parts and will use different methods to consider the decay rate respectively.

When |ξ|2ε2c2(γ1+γ2)2, we have

λ + e λ - t λ + - λ - = ( - ( γ 1 + γ 2 ) | ξ | 2 2 + i c | ξ | + o ( | ξ | 2 ) ) ( 1 2 i c | ξ | + o ( | ξ | ) ) e ( - ( γ 1 + γ 2 ) | ξ | 2 2 - i c | ξ | + o ( | ξ | 2 ) ) t

We find the construction of λ1 is like that of λ2 in Ref. [7]. Initiated by the estimation method in Ref. [7], we get

λ + e λ - t λ + - λ - L 2 ( | ξ | 2 ε ) C e - ( γ 1 + γ 2 ) | ξ | 2 t 4 L 2 ( | ξ | 2 ε ) C ( 0 1 e - ( γ 1 + γ 2 ) 2 ρ 2 t 2 ρ d ρ ) 1 2 C ( 1 + t ) - 1 2 .

Similarly

e λ - t - e λ + t λ + - λ - i ξ τ L 2 ( | ξ | 2 ε ) C ( 1 + t ) - 1 2 .

Thus

ρ ^ 1 L 2 ( | ξ | 2 ε ) = λ + e λ - t - λ - e λ + t λ + - λ - L 2 ρ 10 L 1 + e λ - t - e λ + t λ + - λ - i ξ τ L 2 m 10 L 1 C ( 1 + t ) - 1 2 m a x ( ρ 10 L 1 , m 10 L 1 ) (10)

Using the same method, we can get

m ^ 1 L 2 ( | ξ | 2 ε ) C ( 1 + t ) - 1 2 m a x ( ρ 10 L 1 , m 10 L 1 ) . (11)

When ε|ξ|28c2(γ1+γ2)2R, there exist positive constant b such that λ±-b<0.

Because eλ+t-eλ-tλ+-λ-=eλ-te(λ+-λ-)t-1λ+-λ-, λ+eλ-t-λ-eλ+tλ+-λ-=λ+eλ-te(λ+-λ-)t-1λ+-λ-+eλ-t are smooth functions, we can easily get

ρ ^ 1 L 2 ( ε | ξ | 2 R ) ,   m ^ 1 L 2 ( ε | ξ | 2 R ) C e - b t ( ρ 10 L 1 + m 10 L 1 ) (12)

When |ξ|2R, notice λ±-b for some positive b, then

1 λ + - λ - = 1 | ξ | 2 ( γ 1 + γ 2 ) ( 1 + 2 c 2 ( γ 1 + γ 2 ) 2 1 | ξ | 2 + o ( 1 | ξ | 2 ) ) C 1 | ξ | 2

we have

G ^ ( ρ ^ 10 m ^ 10 ) L 2 ( | ξ | 2 R ) C e - b t ( ρ ^ 10 L 2 ( | ξ | 2 R ) + m ^ 10 L 2 ( | ξ | 2 R ) ) (13)

Next, we consider eλ-t-eλ+tλ+-λ-iξτL2(|ξ|2ε).

Since 4c2|ξ|2-(γ1+γ2)2|ξ|4=2c|ξ|1-(γ1+γ2)4c2|ξ|2=2c|ξ|+O(|ξ|3), we have

| s i n 2 c | ξ | t | | s i n 2 c | ξ | t - s i n 4 c 2 | ξ | 2 - ( γ 1 + γ 2 ) 2 | ξ | 4 t | + | s i n 4 c 2 | ξ | 2 - ( γ 1 + γ 2 ) 2 | ξ | 4 t | | ( O ( | ξ | 3 ) t ) | + | s i n 4 c 2 | ξ | 2 - ( γ 1 + γ 2 ) 2 | ξ | 4 t | ,

then

s i n 2 4 c 2 | ξ | 2 - ( γ 1 + γ 2 ) 2 | ξ | 4 t 1 2 s i n 2 2 c | ξ | t + ( O ( | ξ | 3 ) t ) 2 , (14)

From (9) and (14), we have

e λ - t - e λ + t λ + - λ - i ξ τ L 2 ( | ξ | 2 ε ) C e - ( γ 1 + γ 2 ) | ξ | 2 t 2 s i n 4 c 2 | ξ | 2 - ( γ 1 + γ 2 ) 2 | ξ | 4 t L 2 ( | ξ | 2 ε ) C ( | ξ | 2 ε e - ( γ 1 + γ 2 ) | ξ | 2 t 2 1 2 s i n 2 2 c | ξ | t d ξ ) 1 2 - C ( | ξ | 2 ε e - ( γ 1 + γ 2 ) | ξ | 2 t 2 ( O ( | ξ | 3 ) t ) 2 d ξ ) 1 2 = I 1 + I 2 . (15)

If we fix t5π8cε, we have

I 1 C ( | ξ | ε t e - ( γ 1 + γ 2 ) | ξ | 2 s i n 2 ( 2 c | ξ | t ) | ξ | t - 1 d | ξ | ) 1 2 C k = 0 [ 2 c ε t π - 1 4 ] 1 2 t - 1 2 ( k π + π 4 2 c t k π + 3 π 4 2 c t e - ( γ 1 + γ 2 ) r 2 r d r ) 1 2 = C t - 1 2 , (16)

I 2 C ( e - ( γ 1 + γ 2 ) | ξ | 2 O ( | ξ | 3 ) t - 3 2 | ξ | t - 1 d | ξ | ) 1 2 C t - 5 4 . (17)

From (15), (16), and (17) , when t is large enough, we have

e λ - t - e λ + t λ + - λ - i ξ τ L 2 ( | ξ | 2 ε ) C t - 1 2 . (18)

From (8) and (18), we have

ρ ^ 1 L 2 ρ ^ 1 L 2 ( | ξ | ε ) C 1 t - 1 2 m 10 L 1 , (19)

m ^ 1 L 2 m ^ 1 L 2 ( | ξ | ε ) C 1 t - 1 2 ρ 10 L 1 , (20)

Together with (8), (10), (11), (12), (13), (19), and (20), we get our results.

Theorem 2   Suppose E=max(ρ10L1,m10L1,ρ10L2,m10L2), there exists a positive constant C such that max(ρ1L2,m1L2)C(1+t)-12E. Further on, when t is large enough, we have min(ρ1L2,m1L2)CEt-  12.

Remark 2   From Theorem 2, we know our decay estimate about t is optimal.

3 L 2 Decay of Linearized NSP System

Suppose the initial data of (7) is (ρ20,m20), using the method of Ref. [8], the solution of (7) can be expressed as

ρ ^ 2 ( ξ , t ) = η + e η - t - η - e η + t η + - η - ρ ^ 20 + e η - t - e η + t η + - η - i ξ τ m ^ 20 , (21)

m ^ 2 ( ξ , t ) = - i ξ 8 π ρ ¯ + c 2 | ξ | 2 | ξ | 2 ρ ^ 20 ( e η + t - e η - t η + - η - ) + ξ ξ τ | ξ | 2 ( η + e η - t - η - e η + t η + - η - ) m ^ 20 + e - γ 1 | ξ | 2 t ( I - ξ ξ τ | ξ | 2 ) m ^ 20 , (22)

where

η + = - ( γ 1 + γ 2 ) | ξ | 2 + ( γ 1 + γ 2 ) 2 | ξ | - 4 4 ( c 2 | ξ | 2 + 8 π ρ ¯ ) 2

η - = - ( γ 1 + γ 2 ) | ξ | 2 - ( γ 1 + γ 2 ) 2 | ξ | - 4 4 ( c 2 | ξ | 2 + 8 π ρ ¯ ) 2 (23)

When |ξ|ε, and ε is small enough, we have

( γ 1 + γ 2 ) 2 | ξ | - 4 4 c 2 | ξ | 2 - 32 π ρ ¯ = 4 2 π ρ ¯ i + i c 2 | ξ | 2 + o ( | ξ | 2 ) , (24)

then

η + e η - t η + - η - L 2 ( | ξ | ε ) = ( 1 2 - 1 2 ( γ 1 + γ 2 ) | ξ | 2 1 4 2 π ρ ¯ i + i c 2 | ξ | 2 + o ( | ξ | 2 ) ) e - 1 2 ( γ 1 + γ 2 ) | ξ | 2 t L 2 ( | ξ | ε ) C e - 1 2 ( γ 1 + γ 2 ) | ξ | 2 t L 2 ( | ξ | ε ) C ( 1 + t ) - 1 2 .

Similarly

η + e η - t - η - e η + t η + - η - L 2 ( | ξ | ε ) C ( 1 + t ) - 1 2 , (25)

e η + t - e η - t η + - η - i ξ τ L 2 ( | ξ | ε ) C ( 1 + t ) - 1 , (26)

η + e η - t - η - e η + t η + - η - ξ ξ τ | ξ | 2 + e - γ 1 | ξ | 2 t ( I - ξ ξ τ | ξ | 2 ) L 2 ( | ξ | ε ) C ( 1 + t ) - 1 2 (27)

From (21), (25), and (26), we have

ρ ^ 2 L 2 ( | ξ | 2 ε ) C ( 1 + t ) - 1 2 ρ 20 L 1 + ( 1 + t ) - 1 m 20 L 1 (28)

But for 8πρ¯ξξ2eη+t-eη-tη+-η-L2, we need a much more delicate analysis.

If |ρ^20||ξ|εC1|ξ|ε1, for any positive ε1, from (22) and (24), we have

8 π ρ ¯ ξ | ξ | 2 e η + t - e η - t η + - η - ρ ^ 20 L 2 ( | ξ | ε ) C 1 | ξ | e - 1 2 ( γ 1 + γ 2 ) | ξ | 2 t | ξ | ε 1 L 2 ( | ξ | ε ) C ( 1 | ξ | 2 - 2 ε 1 e - ( γ 1 + γ 2 ) | ξ | 2 t | ξ | d | ξ | ) 1 2 C t - ε 1 . (29)

From (22), (26), (27) and (29), if |ρ^20||ξ|εC1|ξ|ε1, for any positive ε1, we have

m ^ 2 L 2 ( | ξ | 2 ε ) C t - ε 1 + C ( 1 + t ) - 1 2 m 20 L 1 (30)

when ε|ξ|R, |ξ|R with R large enough, using the same method as that of (11), and (12), we can also get

ρ ^ 2 L 2 ( ε | ξ | 2 R ) + m ^ 2 L 2 ( ε | ξ | 2 R ) C e - b t ( ρ 20 L 1 + m 20 L 1 ) , (31)

ρ ^ 2 L 2 ( | ξ | 2 R ) + m ^ 2 L 2 ( | ξ | 2 R ) C e - b t ( ρ 20 H 2 + m 20 H 2 ) (32)

Together with (28), (30), (31) and (32), we have

Theorem 3   Suppose E=max(ρ10L1,m10L1,ρ10H2,m10H2), |ρ^20||ξ|εC1|ξ|ε1for any positive ε1, there exists a positive constant C such that

ρ ^ 2 L 2 C ( 1 + t ) - 1 2 E

m ^ 2 L 2 C t - ε 1 + C ( 1 + t ) - 1 2 E

Theorem 4   If |ρ^20||ξ|εC1|ξ|ε1, for any positive ε1, we have m2L2Ct-ε1, ρ2L2Ct-12.

Proof   From (23) and (24), we have

η + e η - t - η - e η + t η + - η - L 2 η + e η - t - η - e η + t η + - η - L 2 ( | ξ | ε ) C 1 η + e η - t - η - e η + t L 2 ( | ξ | ε ) C 1 e - ( γ 1 + γ 2 ) | ξ | 2 t 2 ( | ξ | 2 s i n ( γ 1 + γ 2 ) | ξ | - 4 4 c 2 | ξ | 2 - 32 π ρ ¯ 2 t + c o s ( γ 1 + γ 2 ) | ξ | - 4 4 c 2 | ξ | 2 - 32 π ρ ¯ 2 t ) L 2 ( | ξ | ε ) C e - ( γ 1 + γ 2 ) | ξ | 2 t 2 c o s ( 2 2 π ρ ¯ t + c 2 | ξ | 2 2 t ) L 2 ( | ξ | ε ) - C ( e - ( γ 1 + γ 2 ) | ξ | 2 t ( O ( | ξ | 4 ) t ) 2 d ξ ) 1 2 - C ( | ξ | 4 e - ( γ 1 + γ 2 ) | ξ | 2 t d ξ ) 1 2

= I 1 + I 2 + I 3 . (33)

Fix t large enough,

I 1 1 2 k = [ 2 2 π ρ ¯ t + c 2 | ξ | 2 t 2 π - 1 4 ] [ 2 2 π ρ ¯ t + c 2 | ξ | 2 t 2 π + 1 4 ] 2 2 π ρ ¯ t + c 2 | ξ | 2 t 2 [ k π - π 4 , k π + π 4 ] e - ( γ 1 + γ 2 ) | ξ | 2 t d ξ C t - 1 2 . (34)

Because

I 2 C t - 3 2 ,   I 3 C t - 3 2 , (35)

from (33), (34) and (35), we have

η + e η - t - η - e η + t η + - η - L 2 C t - 1 2 . (36)

Similarly, we have

ξ | ξ | 2 ρ ^ 20 e η + t - e η - t η + - η - L 2 C ( | ξ | ε 1 | ξ | 2 - 2 ε 1 e - ( γ 1 + γ 2 ) | ξ | 2 t 2 s i n 2 t 32 π ρ ¯ + 4 c 2 | ξ | 2 - ( γ 1 + γ 2 ) | ξ | 4 d ξ ) 1 2 C t - ε 1 . (37)

Together with (21), (22), (36) and (37), we get our results.

Considering the meaning of ρ1, m1, ρ2, m2, combining Theorem 2, Theorem 3, and Theorem 4, we have the conclusion of Theorem 1 in this paper.

References

  1. Li H L, Yang T, Zou C. Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system[J]. Acta Mathematica Scientia, 2009, 29(6): 1721-1736. [Google Scholar]
  2. Wu Z G, Wang W K. Space-time estimates of the 3D bipolar compressible Navier-Stokes-Poisson system with unequal viscosities[J]. Science China Mathematics, 2024, 67(5): 1059-1084. [Google Scholar]
  3. Zhang G J, Li H L, Zhu C J. Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in Formula 3[J]. Journal of Differential Equations, 2011, 250(2): 866-891. [Google Scholar]
  4. Lin Q Y, Hao C C, Li L H. Global well-posedness of compressible bipolar Navier-Stokes-Poisson equations[J]. Acta Mathematica Sinica, 2012, 28 (5): 925-940. [Google Scholar]
  5. Zhao Z Y, Li Y P. Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force[J]. Nonlinear Analysis: Real World Applications, 2014, 16: 146-162. [Google Scholar]
  6. Xu H M, Wang W K. Pointwise estimate of solutions of isentropic Navier-Stokes equations in even space-dimensions[J]. Acta Mathematica Scientia, 2001, 21(3): 417-427. [Google Scholar]
  7. Xu H M, Yan L X. L2 decay estimate of BCL equation[J]. Wuhan Univ J of Nat Sci, 2017, 22(4): 283-288. [Google Scholar]
  8. Li H L, Zhang T. Large time behavior of solutions to 3D compressible Navier-Stokes-Poisson system[J]. Science China Mathematics, 2012, 55: 159-177. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.