Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 1, March 2022
Page(s) 35 - 41
DOI https://doi.org/10.1051/wujns/2022271035
Published online 16 March 2022

© Wuhan University 2022

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

A function z defined on a lattice (L,,) and taking values in an Aabelian semigroup is called a valuation ifz(fg)+z(fg)=z(f)+z(g)(1)for all f,gL. A function z defined on some subset L0 of L is called a valuation on L0 if (1) holds whenever f,g,fg,fgL0. For L0 the set of convex bodies, Kn, in Rn with denoting union and intersection. Valuation on convex bodies is a classical concept. Probably the most famous result on valuations is Hadwiger’s classification theorem of continuous rigid motion invariant valuations[1]. For the more recent contributions on valuations on convex bodies readers can refer to Refs. [2-33].

Valuations on convex bodies can be considered as valuations on suitable function spaces. Recently, valuations on functions have been rapidly growing (see Refs. [34-55]). For a space of real-valued functions, the operations and are defined as pointwise maximum and minimum, respectively. A complete classification of valuations intertwining with the SL(n) on Sobolev space [46-49] and Lp space [45,50-52,54] were established, respectively. Valuations on convex functions [34,36,39-42], quasi-concave functions [37,38], Lipschitz functions [43,44], and functions of Bounded variations [53] were introduced and classified.

Recently, Wang and Liu [55] showed that the Fourier transform is the only valuation which is a continuous, positive GL(n) covariant and logarithmic translation covariant complex-valued valuation on integral functions. This motivates the study of complex-valued valuations on functions.

Let L be a lattice of complex-valued functions. For fL, let f and f denote the real and imaginary parts of f, respectively. The pointwise maximum of f and g, fg and the pointwise minimum of f and gfg are defined byfg=fg+i(fg)(2)andfg=fg+i(fg)(3)If f, g are real-valued functions, then (2) and (3) coincide with the real cases. A function Φ:LC is called a valuation ifΦ(fg)+Φ(fg)=Φ(f)+Φ(g)for all f,gL and Φ(0)=0 if 0L. It is called continuous ifΦ(fi)Φ(f), as fif in L.It is called translation invariant ifΦ(f(t))=Φ(f)for every tRn. It is called rotation invariant ifΦ(fθ1)=Φ(f)for every θΟ(n), where θ1 denotes the inverse of θ.

Let p1. If (X,,μ) is a measure space, then the Lp-space, Lp(C,μ) is the collection of µ-measurable complex-valued functions f:XC that satisfiesX|f|pdμA measure space (X,,μ) is called non-atomic if for every E with μ(E)0, there exists F with FE and 0<μ(F)<μ(E). Let χE denote the characteristic function of the measurable set E, i.e.χE={1,xE0,xE

Theorem 1   Let (X,,μ) be a non-atomic measure space and let Φ:Lp(C,μ)C be a continuous valuation. If there exist continuous functions hk:RR with hk(0)=0(k=1,2,3,4) such that Φ(cχE)=(h1(c)+h3(c))μ(E)+i(h2(c)+h4(c))μ(E) for all cC and all E with μ(E), then there exist constants γk,δk0 such that |hk(a)|γk|a|p+δk for aR, andΦ(f)=X(h1f+h3f)dμ+iX(h2f+h4f)dμfor all fLp(C,μ). In addition, δk=0(k = 1,2,3,4) if μ(X)=.

Let Lp(C,Rn) denote the Lp-space of Lebesgue measurable complex-valued functions on Rn.

Theorem 2   A function Φ:Lp(C,Rn)C is a continuous translation invariant valuation if and only if there exist continuous functions hk:RR with the property that there exist constants γk0 such that |hk(a)|γk|a|p for all aR(k = 1,2,3,4), andΦ(f)=Rn(h1f+h3f)(x)dx+iRn(h2f+h4f)(x)dx(4)for all fLp(C,Rn).

Let Sn1 be the unit sphere in Rn and let Lp(C,Sn1) denote the Lp-space of spherical Lebesgue measurable complex-valued functions on Sn1.

Theorem 3   A function Φ:Lp(C,Sn1)C is a continuous rotation invariant valuation if and only if there exist continuous functions hk:RR with the properties that hk(0)=0 and there exist constants γk,δk0 such that |hk(a)|γk|a|p+δk for all aR(k = 1,2,3,4), andΦ(f)=Sn1(h1f+h3f)(u)du+iSn1(h2f+h4f)(u)du(5)for all fLp(C,Sn1).

1 Notation and Preliminary Results

We collect some properties of complex-valued functions. If f is a complex-valued function on Rn, thenf(x)=f+ifwhere f and f denote the real part and imaginary part of f, respectively. The absolute value of f which is also called modulus is defined by|f|=(f)2+(f)2Let p1. For a measure space (X,,μ), define Lp(C,μ) as the space of µ-measurable complex-valued functions f:XC that satisfiesfp=(X|f|pdμ)1pLet f,gLp(C,μ), then fg,fgLp(C,μ). The functional ||||:Lp(C,μ)R is a semi-norm. If functions in Lp(C,μ) that are equal almost everywhere with respect to μ(a.e.[μ]) are identified, then :Lp(C,μ)R becomes a norm. Obviously, Lp(C,μ) is a lattice of complex-valued functions. Let Lp(R,μ) denote the subset of Lp(C,μ), where the functions take real values. For fi,fLp(C,μ), if fifp0, then fif in Lp(C,μ). Moreover,fifLp(C,μ)fif,fif  Lp(R,μ)

The following characterizations of real-valued valuations on functions which were established by Tsang [51] will play key role in our proof. Let Lp(R,Rn) and Lp(R,Sn1) denote the Lp space of Lebesgue measurable real-valued functions on Rn and the Lp space of spherical Lebesgue measurable real-valued functions on Sn1,respectively.

Theorem 4  [51] A function Φ:Lp(R,Rn)R is a continuous translation invariant valuation if and only if there exists a continuous function h:RR with the property that there exists a constant γ0 such that |h(a)|γ|a|p for all aR, andΦ(f)=Rn(hf)(x)dxfor all fLp(R,Rn).

Theorem 5  [51] A function Φ:Lp(R,Sn1)R is a continuous rotation invariant valuation if and only if there exists a continuous function h:RR with the properties that h(0)=0 and there exist constants γ,δ0 such that |h(a)|γ|a|p+δ for all aR, andΦ(f)=Sn1(hf)(u)dufor all fLp(R,Sn1).

2 Main Results

Lemma 1   Let hk:RR be continuous functions with the properties that hk(0)=0 and there exist γk,δk0 such that |hk(a)|γk|a|p+δk for all aR(k =1,...,4). If the function Φ:Lp(C,μ)C is defined byΦ(f)=X(h1f+h3f)dμ+iX(h2f+h4f)dμ(6)then Φ is a continuous valuation provided that δk=0 if μ(X)=.

Proof   For f,gLp(C,μ), letE={xX:fg,  fg},F={xX:fg,  fg},G={xX:fg,  fg},H={xX:fg,  fg}.By (6) and (2), we obtainΦ(fg)=X(h1(fg)+h3(fg))dμ+iX(h2(fg)+h4(fg))dμ=E(h1g+h3g)dμ+iE(h2g​ + ​h4g)dμ+F(h1g+h3f)dμ+iF(h2g+h4f)dμ+G(h1f+h3g)dμ+iG(h2f+h4g)dμ+H(h1f+h3f)dμ+iH(h2f+h4f)dμSimilarly, by (6) and (3), we haveΦ(fg)=E(h1f+h3f)dμ+iE(h2f+h4f)dμ+F(h1f+h3g)dμ+iF(h2f+h4g)dμ+G(h1g+h3f)dμ+iG(h2g+h4f)dμ+H(h1g+h3g)dμ+iH(h2g+h4g)dμNote that EFGH=X and that E, F, G, H are pairwise disjoints. Thus,Φ(fg)+Φ(fg)=Φ(f)+Φ(g)Hence Φ is a valuation.

It remains to show that Φ is continuous. Let fLp(C,μ) and let {fk} be a sequence in Lp(C,μ) with fkf in Lp(C,μ). Next, we will show that Φ(fk) converges to Φ(f) by showing that every subsequence Φ(fkl) of Φ(fkl) has a subsequence, Φ(fklm) which converges to Φ(f). Set f=α+iβ and f=αk+iβk with α,β,αk,βkLp(R,μ) such that αkα and βkβ in Lp(R,μ). Let {fkl} be a subsequence of {fk}, then {fkl} converges to f in Lp(C,μ). Then there exists a subsequence {fklm} of {fkl} which converges to f in Lp(C,μ), where fklm=αklm+iβklm with αklm,βklmLp(R,μ) such that αklmα and βklmβ in Lp(R,μ). Since h1 is continuous, we have(h1αklm)(x)(h1α)(x), a.e.[μ]Since |h1(a)|γ1|a|p+δ1 for all aR, we get|(h1αklm)(x)|γ1|αklm|p+δ1, a.e.[μ].If μ(x), apply αklmα in Lp(R,μ) to getlimmXγ1|αklm|p+δ1dμ=Xγ1|α|pdμ+δ1μ(X)And we take δ1=0 in the above equation if μ(x)=. By a modification of Lebesgue’s Dominated Convergence Theorem (see Ref.[51], Proposition 2.2), we have h1(α)L1(R,μ) andlimmX(h1αklm)dμ=X(h1α)dμ(7)Similarly,limmX(h2αklm)dμ=X(h2α)dμ(8)limmX(h3βklm)dμ=X(h3β)dμ(9)limmX(h4βklm)dμ=X(h4β)dμ(10)Thus,|Φ(fklm)Φ(f)|=|X(h1αklmh1α)dμ+X(h3βklmh3β)dμ+i(X(h2αklmh2α)dμ+X(h4βklmh4β)dμ)||X(h1αklmh1α)dμ|+|X(h3βklmh3β)dμ|+|X(h2αklmh2α)dμ|+|X(h4βklmh4β)dμ|From (7)-(10), we conclude Φ(fklm)Φ(f). Hence, Φ is continuous.

Lemma 2    If the function Φ:Lp(C,μ)C is a valuation, thenΦ(f)=Φ(f)+Φ(if)for all fLp(C,μ).

Proof   If f,f0 or f,f0, then, by (2) and (3), we haveΦ(f)+Φ(if)=Φ(f)+Φ(0)(11)If f0,f0 or f0,f0, then, by (2) and (3), we haveΦ(f)+Φ(0)=Φ(f)+Φ(if)(12)Note that Φ(0)=0, apply (11) and (12), then getΦ(f)=Φ(f)+Φ(if)for all fLp(C,μ).

If we restrict f to Lp(R,μ), then it is obvious that Φ is a valuation on Lp(R,μ). Also, we can construct another valuation on Lp(R,μ) which is related to Φ.

Lemma 3   Let Φ:Lp(C,μ)C be a valuation. If the functions Φ:Lp(R,μ)C is defined byΦ(f)=Φ(if)for all fLp(R,μ), then Φ is a valuation on Lp(R,μ).

Proof   For f,gLp(R,μ), by (2) and (3), we havei(fg)=ifig and i(fg)=ifig(13)By (13) and the valuation property of Φ, it follows thatΦ(fg)+Φ(fg)=Φ(ifig)+Φ(ifig)=Φ(if)+Φ(ig)=Φ(f)+Φ(g)for all f,gLp(R,μ). Thus, Φ is a valuation on Lp(R,μ).

Lemma 4   Let Φ:Lp(R,μ)C be a valuation. If the functions Φ1,Φ2:Lp(R,μ)R are defined byΦ(f)=Φ1(f)+iΦ2(f)for all fLp(R,μ), then both Φ1,Φ2 are real-valued valuations on Lp(R,μ).

Proof   Since Φ is a valuation, we haveΦ(fg)+Φ(fg)=Φ1(fg)+iΦ2(fg)+Φ1(fg)+iΦ2(fg)=Φ(f)+Φ(g)=Φ1(f)+iΦ2(f)+Φ1(g)+iΦ2(g)for all f,gLp(R,μ). Thus,Φ1(fg)+Φ1(fg)=Φ1(f)+Φ1(g)andΦ2(fg)+Φ2(fg)=Φ2(f)+Φ2(g)for all f,gLp(R,μ).

Therefore, both Φ1,Φ2 are real-valued valuations on Lp(R,μ).

In order to establish a representation theorem for continuous complex-valued valuations on Lp(C,μ), we will use the corresponding representation theorem for real case which was obtained by Tsang [51].

Theorem 6  [51] Let (X,,μ) be a non-atomic measure space and let Φ:Lp(R,μ)R be a continuous translation invariant valuation. If there exists a continuous function h:RR with h(0)=0 such that Φ(bχE)=h(b)μ(E) for all bR and all E with μ(E)<, then there exist constants γ1,δ0 such that |h(a)|γ|a|p+δ for all aR, andΦ(f)=X(hf)dμfor all fLp(R,μ). In addition, δ=0 if μ(X)=.

Proof of Theorem 1  

Let Φ:Lp(C,μ)C be a continuous valuation. For fLp(C,μ), by Lemma 2, Lemma 3 and Lemma 4, we haveΦ(f)=Φ(f)+Φ(if)        =Φ1(f)+iΦ2(f)+Φ1(if)+iΦ2(if)        =Φ1(f)+iΦ2(f)+Φ1(f)+iΦ2(f)where Φ1(f)=Φ1(if) and Φ2(f)=iΦ2(if).

Since (fg)​ =​ fg,(fg)​ =​ fg,(fg)=fg, and (fg)=fg. Moreover, Lemma 3 and Lemma 4 imply that Φ1,Φ2,Φ1,Φ2 are real-valued valuations on Lp(R,μ).

If we restrict to fLp(R,μ), then the continuity of Φ implies that Φ1,Φ2, are continuous on Lp(R,μ).

If we consider fLp(C,μ) with f=0, then the continuity of Φ implies that Φ1,Φ2 are continuous on Lp(R,μ). Thus, Φ1,Φ2,Φ1,Φ2 are continuous real-valued valuations on Lp(R,μ). It follows from Theorem 6 that there exist continuous functions hk:RR with the properties that hk(0)=0 and there exist constants γk,δk0 such that |hk(a)|γk|a|p+δk for all aR(k = 1,2,3,4), andΦ(f)=X(h1f+h3f)dμ  + iX(hf+h4f)dμfor all fLp(C,μ). In addition, δk=0(k = 1,2,3,4) if μ(X)=.

If µ is Lebesgue measure, then Lp(C,μ) becomes the space of Lebesgue measurable complex-valued functions. We usually write as Lp(C,Rn).

Lemma 5   Let hk:RR be continuous functions with the property that there exists γk0 such that |hk(a)|γk|a|p for all aR(k = 1,...,4). If the function Φ:Lp(C,Rn)C is defined byΦ(f)=Rn(h1f+h3f)dx   +iX(h2f+h4f)dxThen Φ is a continuous translation invariant valuation.

Proof    Let M enote the collection of Lebesgue measurable sets in Rn. Take X=Rn,=M and µ Lebesgue measure in Lemma 1 to conclude that Φ is a continuous valuation on Lp(C,Rn).

For every tRn and every fLp(C,Rn), we haveΦ(f(xt))=Rn(h1f+h3f)(xt)dx                      +iX(h2f+h4f)(xt)dx                      =Φ(f)which means that Φ is translation invariant.

Proof of Theorem 2  

It follows from Lemma 5 that (4) determines a continuous translation invariant valuation on Lp(C,Rn). Conversely, let Φ:Lp(C,Rn)C be a continuous translation invariant valuation. Taking X=Rn,=M and µ Lebesgue measure in the proof of Theorem 1, we obtainΦ(f)=Φ1(f)+iΦ2(f)+Φ1(f)+iΦ2(f)where Φ1,Φ2,Φ1,Φ2 are real-valued valuations on Lp(R,μ). Theorem 4 implies that there exist continuous functions hk:RR with the property that there exist constants γk0 such that |hk(a)|γk|a|p for all aR(k = 1,2,3,4), andΦ(f)=Rn(h1f+h3f)dx   +iRn(h2f+h4f)dxfor all fLp(C,Rn).

Let W denote the σ-algebra defined asW={E:ESn1,{λx:xE,0λ1}M}

Also denote by σ the spherical Lebesgue measure. If µ is the spherical Lebesgue measure, then Lp(C,σ) denotes the space of spherical Lebesgue measurable complex valued functions. We usually write as Lp(C,Sn1).

Lemma 6   Let hk:RR be continuous functions with the properties that hk(0)=0 and there exists γk,δk0 such that |hk(a)|γk|a|p+δk for all aR(k=1,...,4). If the function Φ:Lp(C,Sn1)C is defined byΦ(f)=Sn1(h1f+h3f)du   +iSn1(h2f+h4f)duthen Φ is a continuous rotation invariant valuation.

Proof   Take X=Sn1,=W and μ=σ in Lemma 1 to conclude that Φ is a continuous valuation on Lp(C,Sn1).

Note that θuSn1 for every θΟ(n) and every uSn1. Since the spherical Lebesgue measure is rotation invariant, we haveΦ(fθ1)=Sn1(h1f+h3f)(θu)du                      +iSn1(h2f+h4f)(θu)du                      =Φ(f)for all fLp(C,Sn1), which completes the proof.

Proof of Theorem 3  

It follows from Lemma 6 that (5) determines a continuous rotation invariant valuation on Lp(C,Sn1).

Conversely, let Φ:Lp(C,Sn1)C be a continuous rotation invariant valuation. Taking X=Sn1,=W and μ=σ in the proof of Theorem 1, we obtainΦ(f)=Φ1(f)+iΦ2(f)+Φ1(f)+iΦ2(f)where Φ1,Φ2,Φ1,Φ2 are real-valued valuations on Lp(R,Sn1).

Theorem 5 implies that there exist continuous functions hk:RR with the properties that hk(0)=0 and there exist constants γk,δk0 such that |hk(a)|γk|a|p+δk for all aR(k = 1,2,3,4), andΦ(f)=Sn1(h1f+h3f)du   +iSn1(h2f+h4f)dufor all fLp(C,Sn1).

References

  1. Hadwiger H. Vorlensungen über Inhalt, Oberfläche und Isoperimetrie [M]. Berlin: Springer-Verlag, 1957. [CrossRef] [Google Scholar]
  2. Alesker S. Continuous rotation invariant valuations on convex sets [J]. Ann of Math, 1999, 149(3): 977-1005. [CrossRef] [MathSciNet] [Google Scholar]
  3. Alesker S. Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture [J]. Geom Funct Anal, 2001, 11(2): 244-272. [CrossRef] [MathSciNet] [Google Scholar]
  4. Alesker S, Bernig A, Schuster F E. Harmonic analysis of translation invariant valuations [J]. Geom Funct Anal, 2011, 21(4): 751-773. [CrossRef] [MathSciNet] [Google Scholar]
  5. Bernig A , Fu J H G. Hermitian integral geometry [J]. Ann of Math, 2011, 173(2): 907-945. [CrossRef] [MathSciNet] [Google Scholar]
  6. Gruber P. Convex and Discrete Geometry [M]. Berlin: Springer-Verlag, 2007. [Google Scholar]
  7. Haberl C. Blaschke valuations [J]. Amer J Math, 2011, 133(3): 717-751. [CrossRef] [MathSciNet] [Google Scholar]
  8. Haberl C. Minkowski valuations intertwining the special linear group [J]. J Eur Math Soc, 2012, 14(5): 1565-1597. [CrossRef] [MathSciNet] [Google Scholar]
  9. Haberl C, Ludwig M. A characterization of Lp intersection bodies[J]. Int Math Res Not, 2006(2006): 10548. [MathSciNet] [Google Scholar]
  10. Haberl C, Parapatits L. The centro-affine Hadwiger theorem [J]. J Amer Math Soc, 2014, 27(3): 685-705. [CrossRef] [MathSciNet] [Google Scholar]
  11. Haberl C , Parapatits L. Valuations and surface area measures [J]. J Reine Angew Math, 2014, 687: 225-245. [MathSciNet] [Google Scholar]
  12. Haberl C, Parapatits L. Moments and valuations [J]. Amer J Math, 2016, 138(6): 1575-1603. [CrossRef] [MathSciNet] [Google Scholar]
  13. Haberl C, Parapatits L. Centro-affine tensor valuations [J]. Adv Math, 2017, 316: 806-865. [CrossRef] [MathSciNet] [Google Scholar]
  14. Klain D A. Star valuations and dual mixed volumes [J]. Adv Math, 1996, 121(1): 80-101. [CrossRef] [MathSciNet] [Google Scholar]
  15. Klain D A. Even valuations on convex bodies [J]. Tran Amer Math Soc, 1999, 352: 71-93. [CrossRef] [Google Scholar]
  16. Klain D A , Rota G C. Introduction to Geometric Probability [M]. Cambridge: Cambridge University Press, 1997. [Google Scholar]
  17. Li J, Leng G S. Lp Minkowski valuations on polytopes [J]. Adv Math, 2016, 299: 139-173. [CrossRef] [MathSciNet] [Google Scholar]
  18. Li J, Yuan S F, Leng G S. Lp-Blaschke valuations [J]. Trans Amer Math Soc, 2015, 367(5) :3161-3187. [CrossRef] [MathSciNet] [Google Scholar]
  19. Liu L J, Wang W. SL(n) contravariant Lp harmonic valuations on polytopes [J]. Discrete Comput Geom, 2021, 66: 977-995. [CrossRef] [MathSciNet] [Google Scholar]
  20. Ludwig M. Moment vectors of polytopes [J]. Rend Circ Mat Pale (2) Suppl, 2002, 70: 1123-138. [Google Scholar]
  21. Ludwig M. Projection bodies and valuations [J]. Adv Math, 2002, 172(2): 158-168. [CrossRef] [MathSciNet] [Google Scholar]
  22. Ludwig M. Valuations on ploytopes containing the origin in their interiors [J]. Adv Math, 2002, 170(2): 239-256. [CrossRef] [MathSciNet] [Google Scholar]
  23. Ludwig M. Ellipsoids and matrix-valued valuations [J]. Duke Math J, 2003, 119(1): 159-188. [MathSciNet] [Google Scholar]
  24. Ludwig M. Minkowski valuations [J]. Trans Amer Math Soc, 2005, 357(10): 4191-4213. [Google Scholar]
  25. Ludwig M. Intersection bodies and valuations [J]. Amer J Math, 2006, 128(6): 1409-1428. [CrossRef] [MathSciNet] [Google Scholar]
  26. Ludwig M. Minkowski areas and valuations [J]. J Differential Geom, 2010, 86(1): 133-161. [MathSciNet] [Google Scholar]
  27. Ludwig M. Covariance matrices and valuations [J]. Adv Appl Math, 2013, 51(3): 359-366. [CrossRef] [MathSciNet] [Google Scholar]
  28. Ludwig M, Reitzner M. A classification of SL(n) invariant valuations [J]. Ann of Math, 2010, 172(2): 1219-1267. [CrossRef] [MathSciNet] [Google Scholar]
  29. Ludwig M, Reitzner M. SL(n) invariant valuations on polytopes [J]. Discrete Comput Geom, 2017, 57(3): 571-581. [CrossRef] [MathSciNet] [Google Scholar]
  30. Ma D , Wang W. LYZ matrices and SL(n) contravariant valuations on polytopes [J]. Canad J Math, 2021, 73(2): 383-398. [CrossRef] [MathSciNet] [Google Scholar]
  31. Parapatits L. SL(n)-contravariant Lp Minkowski valuations [J]. Trans Amer Math Soc, 2014, 366(3): 1195-1211. [Google Scholar]
  32. Parapatits L. SL(n)-covariant Lp-Minkowski valuations [J]. J Lond Math Soc, 2014, 89(2): 397-414. [CrossRef] [MathSciNet] [Google Scholar]
  33. Schneider R. Convex Bodies: The Brunn-Minkowski Theory, [M]. 2nd Edition. Cambridge: Cambridge University Press, 2014. [Google Scholar]
  34. Alesker S. Valuations on convex functions and convex sets and Monge-Ampère operators [J]. Adv Geom, 2019, 19(3): 313-322. [CrossRef] [MathSciNet] [Google Scholar]
  35. Baryshnikov Y, Ghrist R, Wright M. Hadwiger’s theorem for definable functions [J]. Adv Math, 2013, 245: 573-586. [CrossRef] [MathSciNet] [Google Scholar]
  36. Cavallina L , Colesanti A. Monotone valuations on the space of convex functions [J]. Anal Geom Metr Spaces, 2015, 3(1): 167-211. [MathSciNet] [Google Scholar]
  37. Colesanti A, Lombardi N. Valuations on the space of quasi-concave functions [C]// Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics 2169. Berlin: Springer-Verlag, 2017: 71-105. [Google Scholar]
  38. Colesanti A, Lombardi N, Parapatits L. Translation invariant valuations on quasi-concave functions [J]. Studia Mathematica, 2018, 243: 79-99. [CrossRef] [MathSciNet] [Google Scholar]
  39. Colesanti A, Ludwig M, Mussnig F. Minkowski valuations on convex functions [J]. Cala Var Partial Differential Equations, 2017, 56: 162. [CrossRef] [PubMed] [Google Scholar]
  40. Colesanti A, Ludwig M, Mussnig F. Valuations on convex functions [J]. Int Math Res Not, 2019, 8: 2384-2410. [CrossRef] [Google Scholar]
  41. Colesanti A, Ludwig M, Mussnig F. A homogeneous decomposition theorem for valuations on convex functions [J]. J Funct Anal, 2020, 279: 108573. [CrossRef] [MathSciNet] [Google Scholar]
  42. Colesanti A, Ludwig M, Mussnig F. Hessian valuations [J]. Indiana Univ Math J, 2020, 69: 1275-1315. [CrossRef] [MathSciNet] [Google Scholar]
  43. Colesanti A, Pagnini D, Tradacete P, et al. A class of invariant valuations on Lip(Sn-1) [J]. Adv Math, 2020, 366: 107069. [CrossRef] [MathSciNet] [Google Scholar]
  44. Colesanti A, Pagnini D, Tradacete P, et al. Continuous valuations on the space of Lipschitz functions on the sphere [J]. J Funct Anal, 2021, 280: 108873. [CrossRef] [Google Scholar]
  45. Li J, Ma D. Laplace transforms and valuations [J]. J Funct Anal, 2017, 272(2): 738-758. [CrossRef] [MathSciNet] [Google Scholar]
  46. Ludwig M. Fisher information and matrix-valued valuations [J]. Adv Math, 2011, 226(3): 2700-2711. [CrossRef] [MathSciNet] [Google Scholar]
  47. Ludwig M. Valuations on function spaces [J]. Adv Geom, 2011, 11: 745-756. [CrossRef] [MathSciNet] [Google Scholar]
  48. Ludwig M. Valuations on Sobolev spaces [J]. Amer J Math, 2012, 134(3): 827-842. [MathSciNet] [Google Scholar]
  49. Ma D. Real-valued valuations on Sobolev spaces [J]. Sci China Math, 2016, 59(5): 921-934. [NASA ADS] [MathSciNet] [Google Scholar]
  50. Ober M. Lp-Minkowski valuations on Lp-spaces [J]. J Math Anal Appl, 2014, 414(1): 68-87. [CrossRef] [MathSciNet] [Google Scholar]
  51. Tsang A. Valuations on Lp-spaces [J]. Int Math Res Not, 2010, 20: 3993-4023. [Google Scholar]
  52. Tsang A. Minkowski valuations on Lp-spaces [J]. Trans Amer Math Soc, 2012, 364(12): 6159-6186. [CrossRef] [MathSciNet] [Google Scholar]
  53. Wang T. Semi-valuations on BV(Rn) [J]. Indiana Univ Math J, 2014, 63(5): 1447-1465. [CrossRef] [MathSciNet] [Google Scholar]
  54. Wang W, He R J, Liu L. SL(n) covariant vector-valued valuations on Lp spaces [J]. Ann Math Qué, 2021, 45: 465-486. [MathSciNet] [Google Scholar]
  55. Wang W, Liu L J. Fourier transform and valuations [J]. J Math Anal Appl, 2019, 470(2): 1167-1184. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.