Open Access
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 1, March 2022
Page(s) 35 - 41
Published online 16 March 2022
  1. Hadwiger H. Vorlensungen über Inhalt, Oberfläche und Isoperimetrie [M]. Berlin: Springer-Verlag, 1957. [CrossRef] [Google Scholar]
  2. Alesker S. Continuous rotation invariant valuations on convex sets [J]. Ann of Math, 1999, 149(3): 977-1005. [CrossRef] [MathSciNet] [Google Scholar]
  3. Alesker S. Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture [J]. Geom Funct Anal, 2001, 11(2): 244-272. [CrossRef] [MathSciNet] [Google Scholar]
  4. Alesker S, Bernig A, Schuster F E. Harmonic analysis of translation invariant valuations [J]. Geom Funct Anal, 2011, 21(4): 751-773. [CrossRef] [MathSciNet] [Google Scholar]
  5. Bernig A , Fu J H G. Hermitian integral geometry [J]. Ann of Math, 2011, 173(2): 907-945. [CrossRef] [MathSciNet] [Google Scholar]
  6. Gruber P. Convex and Discrete Geometry [M]. Berlin: Springer-Verlag, 2007. [Google Scholar]
  7. Haberl C. Blaschke valuations [J]. Amer J Math, 2011, 133(3): 717-751. [CrossRef] [MathSciNet] [Google Scholar]
  8. Haberl C. Minkowski valuations intertwining the special linear group [J]. J Eur Math Soc, 2012, 14(5): 1565-1597. [CrossRef] [MathSciNet] [Google Scholar]
  9. Haberl C, Ludwig M. A characterization of Lp intersection bodies[J]. Int Math Res Not, 2006(2006): 10548. [MathSciNet] [Google Scholar]
  10. Haberl C, Parapatits L. The centro-affine Hadwiger theorem [J]. J Amer Math Soc, 2014, 27(3): 685-705. [CrossRef] [MathSciNet] [Google Scholar]
  11. Haberl C , Parapatits L. Valuations and surface area measures [J]. J Reine Angew Math, 2014, 687: 225-245. [MathSciNet] [Google Scholar]
  12. Haberl C, Parapatits L. Moments and valuations [J]. Amer J Math, 2016, 138(6): 1575-1603. [CrossRef] [MathSciNet] [Google Scholar]
  13. Haberl C, Parapatits L. Centro-affine tensor valuations [J]. Adv Math, 2017, 316: 806-865. [CrossRef] [MathSciNet] [Google Scholar]
  14. Klain D A. Star valuations and dual mixed volumes [J]. Adv Math, 1996, 121(1): 80-101. [CrossRef] [MathSciNet] [Google Scholar]
  15. Klain D A. Even valuations on convex bodies [J]. Tran Amer Math Soc, 1999, 352: 71-93. [CrossRef] [Google Scholar]
  16. Klain D A , Rota G C. Introduction to Geometric Probability [M]. Cambridge: Cambridge University Press, 1997. [Google Scholar]
  17. Li J, Leng G S. Lp Minkowski valuations on polytopes [J]. Adv Math, 2016, 299: 139-173. [CrossRef] [MathSciNet] [Google Scholar]
  18. Li J, Yuan S F, Leng G S. Lp-Blaschke valuations [J]. Trans Amer Math Soc, 2015, 367(5) :3161-3187. [Google Scholar]
  19. Liu L J, Wang W. SL(n) contravariant Lp harmonic valuations on polytopes [J]. Discrete Comput Geom, 2021, 66: 977-995. [CrossRef] [MathSciNet] [Google Scholar]
  20. Ludwig M. Moment vectors of polytopes [J]. Rend Circ Mat Pale (2) Suppl, 2002, 70: 1123-138. [Google Scholar]
  21. Ludwig M. Projection bodies and valuations [J]. Adv Math, 2002, 172(2): 158-168. [CrossRef] [MathSciNet] [Google Scholar]
  22. Ludwig M. Valuations on ploytopes containing the origin in their interiors [J]. Adv Math, 2002, 170(2): 239-256. [CrossRef] [MathSciNet] [Google Scholar]
  23. Ludwig M. Ellipsoids and matrix-valued valuations [J]. Duke Math J, 2003, 119(1): 159-188. [MathSciNet] [Google Scholar]
  24. Ludwig M. Minkowski valuations [J]. Trans Amer Math Soc, 2005, 357(10): 4191-4213. [Google Scholar]
  25. Ludwig M. Intersection bodies and valuations [J]. Amer J Math, 2006, 128(6): 1409-1428. [CrossRef] [MathSciNet] [Google Scholar]
  26. Ludwig M. Minkowski areas and valuations [J]. J Differential Geom, 2010, 86(1): 133-161. [MathSciNet] [Google Scholar]
  27. Ludwig M. Covariance matrices and valuations [J]. Adv Appl Math, 2013, 51(3): 359-366. [CrossRef] [MathSciNet] [Google Scholar]
  28. Ludwig M, Reitzner M. A classification of SL(n) invariant valuations [J]. Ann of Math, 2010, 172(2): 1219-1267. [CrossRef] [MathSciNet] [Google Scholar]
  29. Ludwig M, Reitzner M. SL(n) invariant valuations on polytopes [J]. Discrete Comput Geom, 2017, 57(3): 571-581. [CrossRef] [MathSciNet] [Google Scholar]
  30. Ma D , Wang W. LYZ matrices and SL(n) contravariant valuations on polytopes [J]. Canad J Math, 2021, 73(2): 383-398. [CrossRef] [MathSciNet] [Google Scholar]
  31. Parapatits L. SL(n)-contravariant Lp Minkowski valuations [J]. Trans Amer Math Soc, 2014, 366(3): 1195-1211. [Google Scholar]
  32. Parapatits L. SL(n)-covariant Lp-Minkowski valuations [J]. J Lond Math Soc, 2014, 89(2): 397-414. [CrossRef] [MathSciNet] [Google Scholar]
  33. Schneider R. Convex Bodies: The Brunn-Minkowski Theory, [M]. 2nd Edition. Cambridge: Cambridge University Press, 2014. [Google Scholar]
  34. Alesker S. Valuations on convex functions and convex sets and Monge-Ampère operators [J]. Adv Geom, 2019, 19(3): 313-322. [CrossRef] [MathSciNet] [Google Scholar]
  35. Baryshnikov Y, Ghrist R, Wright M. Hadwiger’s theorem for definable functions [J]. Adv Math, 2013, 245: 573-586. [CrossRef] [MathSciNet] [Google Scholar]
  36. Cavallina L , Colesanti A. Monotone valuations on the space of convex functions [J]. Anal Geom Metr Spaces, 2015, 3(1): 167-211. [MathSciNet] [Google Scholar]
  37. Colesanti A, Lombardi N. Valuations on the space of quasi-concave functions [C]// Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics 2169. Berlin: Springer-Verlag, 2017: 71-105. [Google Scholar]
  38. Colesanti A, Lombardi N, Parapatits L. Translation invariant valuations on quasi-concave functions [J]. Studia Mathematica, 2018, 243: 79-99. [CrossRef] [MathSciNet] [Google Scholar]
  39. Colesanti A, Ludwig M, Mussnig F. Minkowski valuations on convex functions [J]. Cala Var Partial Differential Equations, 2017, 56: 162. [CrossRef] [PubMed] [Google Scholar]
  40. Colesanti A, Ludwig M, Mussnig F. Valuations on convex functions [J]. Int Math Res Not, 2019, 8: 2384-2410. [CrossRef] [Google Scholar]
  41. Colesanti A, Ludwig M, Mussnig F. A homogeneous decomposition theorem for valuations on convex functions [J]. J Funct Anal, 2020, 279: 108573. [CrossRef] [MathSciNet] [Google Scholar]
  42. Colesanti A, Ludwig M, Mussnig F. Hessian valuations [J]. Indiana Univ Math J, 2020, 69: 1275-1315. [CrossRef] [MathSciNet] [Google Scholar]
  43. Colesanti A, Pagnini D, Tradacete P, et al. A class of invariant valuations on Lip(Sn-1) [J]. Adv Math, 2020, 366: 107069. [CrossRef] [MathSciNet] [Google Scholar]
  44. Colesanti A, Pagnini D, Tradacete P, et al. Continuous valuations on the space of Lipschitz functions on the sphere [J]. J Funct Anal, 2021, 280: 108873. [CrossRef] [Google Scholar]
  45. Li J, Ma D. Laplace transforms and valuations [J]. J Funct Anal, 2017, 272(2): 738-758. [CrossRef] [MathSciNet] [Google Scholar]
  46. Ludwig M. Fisher information and matrix-valued valuations [J]. Adv Math, 2011, 226(3): 2700-2711. [CrossRef] [MathSciNet] [Google Scholar]
  47. Ludwig M. Valuations on function spaces [J]. Adv Geom, 2011, 11: 745-756. [CrossRef] [MathSciNet] [Google Scholar]
  48. Ludwig M. Valuations on Sobolev spaces [J]. Amer J Math, 2012, 134(3): 827-842. [MathSciNet] [Google Scholar]
  49. Ma D. Real-valued valuations on Sobolev spaces [J]. Sci China Math, 2016, 59(5): 921-934. [NASA ADS] [MathSciNet] [Google Scholar]
  50. Ober M. Lp-Minkowski valuations on Lp-spaces [J]. J Math Anal Appl, 2014, 414(1): 68-87. [CrossRef] [MathSciNet] [Google Scholar]
  51. Tsang A. Valuations on Lp-spaces [J]. Int Math Res Not, 2010, 20: 3993-4023. [Google Scholar]
  52. Tsang A. Minkowski valuations on Lp-spaces [J]. Trans Amer Math Soc, 2012, 364(12): 6159-6186. [CrossRef] [MathSciNet] [Google Scholar]
  53. Wang T. Semi-valuations on BV(Rn) [J]. Indiana Univ Math J, 2014, 63(5): 1447-1465. [CrossRef] [MathSciNet] [Google Scholar]
  54. Wang W, He R J, Liu L. SL(n) covariant vector-valued valuations on Lp spaces [J]. Ann Math Qué, 2021, 45: 465-486. [MathSciNet] [Google Scholar]
  55. Wang W, Liu L J. Fourier transform and valuations [J]. J Math Anal Appl, 2019, 470(2): 1167-1184. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.