Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 4, August 2022
Page(s) 287 - 295
DOI https://doi.org/10.1051/wujns/2022274287
Published online 26 September 2022

© Wuhan University 2022

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

In this paper we consider the boundary value problem of nonlinear fractional differential equations

C D 0 + α u (   t ) + f ( t ,   u ( t ) ,   u ' ( t ) ) = 0 ,   t [ 0 ,   1 ] (1)

u ' ( 0 ) - β u ' ( ξ ) = 0 ,   u ( 1 ) + γ u ' ( η ) = 0 (2)

where fC([0,1]×[0,+)×(-,+), (0,+)) and 1<α2, β(0,1) ,γ>0,0ξη1 and CD0+α denotes the Caputo's fractional derivative of order α.

Due to the development of the theory of fractional calculus and its applications, such as Bode's analysis of feedback amplifiers, aerodynamics and polymer rheology in the fields of physics, etc, many works on the basic theory of fractional calculus and fractional order differential equations have been done [1-7]. Recently, there have been many papers dealing with the solutions or positive solutions to boundary value problems for nonlinear fractional differential equations (FBVPs) with local boundary conditions[8-23] and nonlocal boundary conditions[24-35] and references along this line.

Zhang[13] proved the existence of positive solution to the boundary value problem of fractional order differential equation

C D 0 + q u ( t ) = f ( t ,   u ( t ) ) ,   t ( 0 ,   1 ) , u ( 0 ) + u ' ( 0 ) = 0 ,   u ( 1 ) + u ' ( 1 ) = 0 ,  

where 1<q2 and fC([0,1]×[0,+)[0,+)).

By using the fixed point theorem, Goodrich[22] considered the following class of nonlinear fractional differential equations with the given boundary conditions for multiplicity of positive solutions as

D 0 + α u ( t ) + f ( t ,   u ( t ) ) = 0 ,   t ( 0 ,   1 ) ,   n - 1 < α n u ( i ) ( 0 ) = 0 ,   0 i n - 2   a n d   D 0 + β u ( 1 ) = 0  

Specially, there are a few researches concerning four-point boundary value problems for fractional differential equations. For examples, in Ref.[28], the authors considered a class of four-point fractional boundary value problem of the form

D 0 + α u ( t ) + f ( t ,   u ( t ) ) = 0 ,   t ( 0 ,   1 ) , u ' ( 0 ) - μ 1 u ( ξ ) = 0 ,   u ' ( 1 ) + μ 2 u ( η ) = 0

where u' denotes the first order derivative of function u and 1<α2,  0ξη1, 0μ1,μ21,f: [0,1]×R+R+ is continuous and D0+α is the Caputo's fractional derivative of order α.

In Ref.[29], the following four-point nonlinear boundary value problem

C D 0 + α u ( t ) + f ( t ,   u ( t ) ,   ( K u ) ( t ) ,   ( H u ) ( t ) ) = 0 ,   t ( 0 ,   1 ) , a 1 u ( 0 ) - b 1 u ' ( 0 ) = d 1 u ( ξ 1 ) , a 2 u ( 1 ) + b 2 u ' ( 1 ) = d 2 u ( ξ 2 )

was considered. The existence of solutions of the problem were established.

Ji and Ge [30] studied the following four-point nonlocal boundary value problems of fractional order

C D 0 + α u ( t ) + f ( t ,   u ( t ) ) = 0 ,   t [ 0 ,   1 ] , u ' ( 0 ) - β u ' ( ξ ) = 0 ,   u ( 1 ) + γ u ' ( η ) = 0

where 1<α2, ξη1 and CD0+α is Caputo's fractional derivative. By using the fixed point theorem, multiplicity results of positive solutions are obtained.

We noticed that in these work the existence results of positive solutions were all established under the assumption that the derivative of the unknown function was not involved in the nonlinear term explicitly. The main reason is that one can not derive the concavity or convexity of the function by the sign of its fractional derivative. On account of the practical meaning of u'(t), it is interesting to consider the boundary value problem of fractional differential equations in which the derivative of the unknown function is involved in the nonlinear term explicitly.

In this paper, by using the careful analysis of the associated Green's function and defining the special cone in a suitable Banach space together with the Avery-Peterson fixed point theorem, we overcome the difficulties bringing by the lack of the concavity or convexity of the unknown function and show the existence of multiple positive solutions of problem (1)-(2).The results complete and extend the previous work on boundary value problem of fractional differential equations.

1 Preliminaries

Definition 1   The Riemann-Liouville fractional integral of order α>0 of a function u(t) is given by

I 0 + α u ( t ) = 1 Γ ( α ) 0 t ( t - s ) α - 1 u ( s ) d s

provided the right side is point-wise defined on (0,+).

Definition 2   The Caputo's fractional derivative of order α>0 of a continuous function u(t) is given by

C D 0 + α u ( t ) = 1 Γ ( n - α ) 0 t u ( n ) ( s ) ( t - s ) 1 + α - n d s

where n=[α]+1, provided that the right side is point-wise defined on (0,+).

Lemma 1   Let α>0. The fractional differential equation D0+αu(t)=0 has solution

u ( t ) = C 1 + C 2 t + C 3 t 2 + + C n t n - 1 , C i R , i = 1,2 , , n .

Lemma 2   Assume that u(t) is differentiable with a fractional derivative of order α>0. Then

I 0 + α D 0 + α u ( t ) = u ( t ) + C 1 + C 2 t + C 3 t 2 + + C n t n - 1 , C i R , i = 1,2 , , n ,

where n is the smallest integer greater than or equal to α.

Definition 3   The map ϕ is said to be a nonnegative continuous convex functional on cone P of a real Banach space E provided that ϕ: P[0,+) is continuous and

ϕ ( t x + ( 1 - t ) y ) t ϕ ( x ) + ( 1 - t ) ϕ ( y ) ,   x , y P , t [ 0,1 ] .

Definition 4   The map β is said to be a nonnegative continuous concave functional on cone P of a real Banach space E provided that β: P[0,+) is continuous and

β ( t x + ( 1 - t ) y ) t β ( x ) + ( 1 - t ) β ( y ) ,   x , y P , t [ 0,1 ] .

Let γ,θ be nonnegative continuous convex functionals on P, ϕ be a nonnegative continuous concave functional on P and ψ be a nonnegative continuous functional on P. Then for positive numbers a, b, c and d, we define the following convex sets:

P ( γ , d ) = { x P | γ ( x ) < d } , P ( γ , ϕ , b , d ) = { x P | b ϕ ( x ) , γ ( x ) d } , P ( γ , θ , ϕ , b , c , d ) = { x P | b ϕ ( x ) , θ ( x ) c , γ ( x ) d }

and a closed set

R ( γ , ψ , a , d ) = { x P | a ψ ( x ) , γ ( x ) d } .

Lemma 3 [36]Let P be a cone in Banach space E. Let γ,θ be nonnegative continuous convex functionals on P, ϕ be a nonnegative continuous concave functional on P, and ψ be a nonnegative continuous functional on P satisfying

ψ ( λ x ) λ ψ ( x ) , 0 λ 1 ,

ϕ ( x ) ψ ( x ) , x l γ ( x )   f o r   x P ( γ , d ) ¯ ,

where P(γ,d)¯ is the closure of the set P(γ, d). Suppose T:P(γ,d)¯P(γ,d)¯ is completely continuous and there exist positive numbers a, b, c with a<b such that

( S 1 ) { x P ( γ , θ , ϕ , b , c , d ) | ϕ ( x ) > b } ,   ϕ ( T x ) > b   f o r   x P ( γ , θ , ϕ , b , c , d ) ; ( S 2 ) ϕ ( T x ) > b , x P ( γ , ϕ , b , d )   w i t h   θ ( T x ) > c ; ( S 3 ) 0 R ( γ , ψ , a , d )   w i t h   ψ ( T x ) < a   f o r   x R ( γ , ψ , a , d )   w i t h   ψ ( x ) = a .

Then T has at least three fixed points x1,x2,x3P(γ,d)¯ such that:

γ ( x i ) d , i = 1,2 , 3 ; b < ϕ ( x 1 ) ; a < ψ ( x 2 ) , ϕ ( x 2 ) < b ; ψ ( x 3 ) < a .

2 Main Results

Lemma 4[30]Given y(t)C[0,1], then boundary value problem

D 0 + α u ( t ) + y ( t ) = 0 , t [ 0,1 ] (3)

u ' ( 0 ) - β u ' ( ξ ) = 0 , u ( 1 ) + γ u ' ( η ) = 0 (4)

is equivalent to

u ( t ) = 0 1 G ( t ,   s ) y ( s ) d s ,

where

G ( t , s ) = { - ( t - s ) α - 1 Γ ( α ) + ( 1 - s ) α - 1 Γ ( α ) + β ( 1 + γ - t ) ( ξ - s ) α - 2 Γ ( α - 1 ) ( 1 - β ) + γ ( η - s ) α - 2 Γ ( α - 1 ) , 0 s ξ , s t ( 1 - s ) α - 1 Γ ( α ) + β ( 1 + γ - t ) ( ξ - s ) α - 2 Γ ( α - 1 ) ( 1 - β ) + γ ( η - s ) α - 2 Γ ( α - 1 ) , 0 s ξ , s t - ( t - s ) α - 1 Γ ( α ) + ( 1 - s ) α - 1 Γ ( α ) + γ ( η - s ) α - 2 Γ ( α - 1 ) , ξ s η ,   s t ( 1 - s ) α - 1 Γ ( α ) + γ ( η - s ) α - 2 Γ ( α - 1 ) , ξ s η ,   s t - ( t - s ) α - 1 Γ ( α ) + ( 1 - s ) α - 1 Γ ( α ) , η s 1 ,   s t ( 1 - s ) α - 1 Γ ( α ) , η s 1 ,   s t

Furthermore, the function G(t, s) satisfies that

G ( t , s ) 0   f o r   a l l   t , s [ 0,1 ]   a n d   G ( t , s ) > 0   f o r   a l l   t , s ( 0,1 )

Lemma 5   The function G(t, s) satisfies the following properties:

1) G(t, s) is decreasing with respect to t;

2) min0tηG(t, s)γ0max0t1G(t, s), s[0,1], where

γ 0 = m i n { 1 - η α - 1 α - 1 + β 1 - β ( 1 + γ - η ) ξ α - 2 + γ η α - 2 1 α - 1 + β 1 - β ( 1 + γ ) ξ α - 2 + γ η α - 2 , 1 - ( η - ξ ) α - 1 ( 1 - ξ ) α - 1 + ( α - 1 ) γ ( η - ξ ) α - 2 , 1 } > 0 .

Proof   1) To prove that 1) is true, we begin with

G ( t , s ) t = { - ( t - s ) α - 2 Γ ( α - 1 ) - β ( ξ - s ) α - 2 Γ ( α - 1 ) ( 1 - β ) , 0 s ξ , s t - β ( ξ - s ) α - 2 Γ ( α - 1 ) ( 1 - β ) , 0 s ξ , s t - ( t - s ) α - 2 Γ ( α - 1 ) , ξ s 1 , s t 0 ,   ξ s 1 , s t

It is easy to find that G(t, s) is decreasing with respect to t.

2) From the expression and monotonicity of function G(t, s) with respect to t , we have

m i n 0 t η G ( t ,   s ) = G ( η ,   s ) ,   m a x 0 t 1 G ( t ,   s ) = G ( 0 ,   s ) .

Thus, for 0sξ,

G ( η , s ) G ( 0 , s ) = - ( η - s ) α - 1 Γ ( α ) + ( 1 - s ) α - 1 Γ ( α ) + β ( 1 + γ - t ) ( ξ - s ) α - 2 Γ ( α - 1 ) ( 1 - β ) + γ ( η - s ) α - 2 Γ ( α - 1 ) ( 1 - s ) α - 1 Γ ( α ) + β ( 1 + γ ) ( ξ - s ) α - 2 Γ ( α - 1 ) ( 1 - β ) + γ ( η - s ) α - 2 Γ ( α - 1 ) 1 - η α - 1 α - 1 + β 1 - β ( 1 + γ - η ) ξ α - 2 + γ η α - 2 1 α - 1 + β 1 - β ( 1 + γ ) ξ α - 2 + γ η α - 2 .

For ξsη,

G ( η , s ) G ( 0 , s ) = - ( η - s ) α - 1 Γ ( α ) + ( 1 - s ) α - 1 Γ ( α ) + γ ( η - s ) α - 2 Γ ( α - 1 ) ( 1 - s ) α - 1 Γ ( α ) + γ ( η - s ) α - 2 Γ ( α - 1 ) 1 - ( η - ξ ) α - 1 ( 1 - ξ ) α - 1 + ( α - 1 ) γ ( η - ξ ) α - 2 > 0 .

For ηs1,G(η,s)=G(0,s). Then, we conclude that

m i n 0 t η G ( t ,   s ) = G ( η ,   s ) γ 0 G ( 0 ,   s ) = γ 0 m a x 0 t 1 G ( t ,   s ) .

Lemma 6   Assume that y(t)>0 and u(t) is a solution to problem (3)-(4). Then

m a x 0 t 1 |   u ( t ) | ( 1 + γ ) m a x 0 t 1 |   u ' ( t ) | .

Proof   The fact that u(0)=max0t1| u(t)| and

u ( 0 ) = u ( 1 ) - 0 1 u ' ( s ) d s = - γ u ' ( η ) - 0 1 u ' ( s ) d s

ensure that

m a x 0 t 1 |   u ( t ) | ( 1 + γ ) m a x 0 t 1 |   u ' ( t ) | .

Let the space X=C1[0,1] endowed with the norm

u = m a x { m a x 0 t 1 | u ( t ) | ,   m a x 0 t 1 | u ' ( t ) | } .

It is well known that X is a Banach space . Define the cone KX by

K = { u X   |   u ( t ) 0 ,   m i n t [ 0 , η ] u ( t ) γ 0 m a x 0 t 1 u ( t ) , m a x 0 t 1 | u ( t ) | ( 1 + γ ) m a x 0 t 1 | u ' ( t ) | } .

Lemma 7   Let T: KX be the operator defined by (Tu)(t):=01G(t, s)f(s, u(s), u'(s))ds. Then T: KK is completely continuous.

Proof   First, we will show that the operator T: KX is continuous. For any un,uK,n=1,2,, with limnun-n=0, we have

l i m n u n = u , l i m n u n ' = u ' , t [ 0,1 ] .

From the continuity of function f, we obtain

l i m n + f ( t , u n ( t ) , u n ' ( t ) ) = f ( t , u ( t ) , u ' ( t ) ) , t [ 0,1 ] .

Thus

s u p t [ 0,1 ] | f ( t , u n ( t ) , u n ' ( t ) ) - f ( t , u ( t ) , u ' ( t ) ) | 0 , n + .

Therefore,

| ( T u n )   ( t ) - ( T u )   ( t ) | = | 0 1 G ( t ,   s ) ( f ( s ,   u n ( s ) ,   u n ' ( s ) - f ( s ,   u ( s ) ,   u ' ( s ) ) d s |     = ( 1 Γ ( α + 1 ) + γ η α - 1 Γ ( α ) + β ( 1 + γ ) ξ α - 1 ( 1 - β ) Γ ( α ) ) s u p t [ 0,1 ] | f ( t , u n ( t ) , u n ' ( t ) ) - f ( t , u ( t ) , u ' ( t ) ) | ,

| ( T u n )   ' ( t ) - ( T u ) '   ( t ) | = | - 0 t ( t - s ) α - 2 Γ ( α - 1 ) | f ( s ,   u n ,   u n ' ) - f ( s ,   u ,   u ' ) | d s - 0 ξ β ( ξ - s ) α - 2 ( 1 - β ) Γ ( α - 1 ) | f ( s ,   u n ,   u n ' ) - f ( s ,   u ,   u ' | d s | ( 1 Γ ( α ) + β ξ α - 1 ( 1 - β ) Γ ( α ) ) s u p t [ 0,1 ] | f ( t , u n ( t ) , u n ' ( t ) ) - f ( t , u ( t ) , u ' ( t ) ) | ,

which implies that Tun-Tu0,n. These ensure that T is continuous. Second, we will show that T is completely continuous.

Let ΩK be bounded. Then there exists a positive constant R1>0 such that uR1,uΩ. Denote

R = m a x 0 t 1 ,   u Ω | f ( t ,   u ( t ) ,   u ' ( t ) ) | + 1 .

Then for uΩ, we have

| T u | 0 1 G ( 0 ,   s ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s ( 0 ξ ( ( 1 - s ) α - 1 Γ ( α ) + β ( 1 + γ ) ( ξ - s ) α - 2 Γ ( α - 1 ) ( 1 - β ) + γ ( η - s ) α - 2 Γ ( α - 1 ) ) d s + ξ η ( ( 1 - s ) α - 1 Γ ( α ) + γ ( η - s ) α - 2 Γ ( α - 1 ) ) d s + η 1 ( 1 - s ) α - 1 Γ ( α ) d s ) × R = ( 1 Γ ( α + 1 ) + γ η α - 1 Γ ( α ) + β ( 1 + γ ) ξ α - 1 Γ ( α ) ( 1 - β ) ) × R ,

| T ' u | = | - 0 t ( t - s ) α - 2 Γ ( α - 1 ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s - β Γ ( α - 1 ) ( 1 - β ) 0 ξ ( ξ - s ) α - 2 f ( s ,   u ( s ) ,   u ' ( s ) ) d s | ( 1 Γ ( α ) + β ξ α - 1 Γ ( α ) ( 1 - β ) ) × R .

H e n c e   T ( Ω )   i s   b o u n d e d .   F o r   u Ω , t 1 , t 2 [ 0,1 ] , o n e   h a s

|   T u ( t 2 ) - T u ( t 1 ) | | 1 Γ ( α ) ( 0 t 2 ( t 2 - s ) α - 1 f ( s ,   u ( s ) ,   u ' ( s ) ) d s - 0 t 1 ( t 1 - s ) α - 1 f ( s ,   u ( s ) ,   u ' ( s ) ) d s ) | + β | t 2 - t 1 | Γ ( α - 1 ) ( 1 - β ) 0 ξ ( ξ - s ) α - 2 f ( s ,   u ( s ) ,   u ' ( s ) ) d s R Γ ( α + 1 ) × | t 2 α - t 1 α | + β R Γ ( α - 1 ) ( 1 - β ) × | t 2 - t 1 | ,

|   T u ' ( t 2 ) - T u ' ( t 1 ) | | 1 Γ ( α - 1 ) ( 0 t 1 ( t 1 - s ) α - 2 f ( s ,   u ( s ) ,   u ' ( s ) ) d s - 0 t 2 ( t 2 - s ) α - 2 f ( s ,   u ( s ) ,   u ' ( s ) ) d s ) | R Γ ( α ) × | t 2 α - 1 - t 1 α - 1 | .

T h u s ,

T u ( t 2 ) - T u ( t 1 ) 0   f o r   t 1 t 2 ,   u Ω .

By means of the Arzela-Ascoli theorem, we claim that T is completely continuous. Finally, we see that

m i n 0 t η | T u ( t ) | = m i n 0 t η 0 1 G ( t ,   s ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s γ 0 0 1 G ( 0   s ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s γ 0 m a x 0 t 1 ( T u ) ( t )

Considering the definition of the operator T together with Lemma 6, one can find that

m a x 0 t 1 |   T u ( t ) | ( 1 + γ ) m a x 0 t 1 |   T u ' ( t ) | .

Thus, we conclude that T: KK is a completely continuous operator.

Let the nonnegative continuous concave functional ϕ, the nonnegative continuous convex functionals γ,θ and the nonnegative continuous functional ψ be defined on the cone by

γ ( u ) = m a x 0 t 1 | u ' ( t ) | ,   θ ( u ) = ψ ( u ) = m a x 0 t 1 | u ( t ) | ,   ϕ ( u ) = m i n 0 t η | u ( t ) | .

By Lemmas 5 and 6, the functionals defined above satisfy that

γ 0 θ ( u ) ϕ ( u ) θ ( u ) = ψ ( u ) ,   u ( 1 + γ ) γ ( u ) ,   u K .

Therefore condition of Lemma 3 is satisfied.

Assume that there exist constants 0<a,b,d with a<b<d,c=bγ0 and

d > α ( 1 - β + β ξ α - 1 ) γ 0 ( 1 - β + α γ ( 1 - β ) η α - 1 + α β ( 1 + γ ) ξ α - 1 ) b

such that

( A 1 )    f ( t , u , v ) ( 1 - β ) Γ ( α ) 1 - β + β ξ α - 1 d ,   ( t ,   u ,   v ) [ 0,1 ] × [ 0 ,   ( 1 + γ ) d ] × [ - d ,   d ] ; ( A 2 )    f ( t , u , v ) > ( 1 - β ) Γ ( α + 1 ) γ 0 ( 1 - β + α γ ( 1 - β ) η α - 1 + α β ( 1 + γ ) ξ α - 1 ) b ,   ( t ,   u ,   v ) [ 0 ,   η ] × [ b ,   b / γ 0 ] × [ - d ,   d ] ; ( A 3 )    f ( t , u , v ) < ( 1 - β ) Γ ( α + 1 ) 1 - β + α γ ( 1 - β ) η α - 1 + α β ( 1 + γ ) ξ α - 1 a ,   ( t ,   u ,   v ) [ 0 ,   1 ] × [ 0 ,   a ] × [ - d ,   d ] .

Theorem 1   Under assumptions (A1)-(A3), problem (1-2) has at least three positive solutions u1, u2, u3 satisfying

m a x 0 t 1 | u i ' ( t ) | d ,   i = 1 ,   2 ,   3 ;   b < m i n 0 t η | u 1 ( t ) | ; a < m a x 0 t 1 | u 2 ( t ) | ,   m i n 0 t η | u 2 ( t ) | < b , m a x 0 t 1 | u 3 ( t ) | a .

Proof   Problem (1-2) has a solution u=u(t) if and only if u solves the operator equation

u ( t ) = 0 1 G ( t ,   s ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s = ( T u ) ( t ) .

For uK(γ,d)¯, we have γ(u)=max0t1|u'(t)|<d. Then

f ( t , u ( t ) , u ' ( t ) ) ( 1 - β ) Γ ( α ) 1 - β + β ξ α - 1 d .

Thus

| γ ( T u ) | = m a x 0 t 1 | - 0 t ( t - s ) α - 2 Γ ( α - 1 ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s - β Γ ( α - 1 ) ( 1 - β ) 0 ξ ( ξ - s ) α - 2 f ( s ,   u ( s ) ,   u ' ( s ) ) d s | ( 1 Γ ( α ) + β ξ α - 1 Γ ( α ) ( 1 - β ) ) × ( 1 - β ) Γ ( α ) 1 - β + β ξ α - 1 d = d

Hence, T: K(γ,d)¯K(γ,d)¯.

The fact that the constant function u(t)=b/γ0K(γ, θ, ϕ, b, c,d) and ϕ(b/γ0)>b implies that {uK(γ, θ, ϕ, b, c, d|ϕ(u)>b)}. For uK(γ, θ, ϕ, b, c, d), we have bu(t)bγ0,|u'(t)|<d  for 0tη. From assumption (A2), we see

f ( t , u ( t ) , u ' ( t ) ) > ( 1 - β ) Γ ( α + 1 ) γ 0 ( 1 - β + α γ ( 1 - β ) η α - 1 + α β ( 1 + γ ) ξ α - 1 ) b

Thus

ϕ ( T u ) = m i n 0 t η 0 1 G ( t ,   s ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s γ 0 0 1 G ( 0 ,   s ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s = γ 0 ( 1 Γ ( α + 1 ) + γ η α - 1 Γ ( α ) + β ( 1 + γ ) ξ α - 1 Γ ( α ) ( 1 - β ) ) × ( 1 - β ) Γ ( α + 1 ) γ 0 ( 1 - β + α γ ( 1 - β ) η α - 1 + α β ( 1 + γ ) ξ α - 1 ) b = b

which means ϕ(Tu)>b, uK(γ, θ, ϕ, b, bγ0, d). These ensure that condition (S1) of Lemma 3 is satisfied. Secondly, for all, uK(γ, ϕ, b, d),θ(Tu)>c,

ϕ ( T u ) γ 0 θ ( T u ) > γ 0 c = γ 0 b γ 0 = b

Thus, condition (S2) of Lemma 3 holds. Finally we show that (S3) also holds. We see that ψ(0)=0<a and 0R(γ,ψ,a,d). Suppose that xR(γ, ψ, a, d),ψ(x)=a. Then by assumption (A3)

ψ ( T u ) = m a x 0 t η | 0 1 G ( t ,   s ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s | = 0 1 G ( 0 ,   s ) f ( s ,   u ( s ) ,   u ' ( s ) ) d s ( 1 Γ ( α + 1 ) + γ η α - 1 Γ ( α ) + β ( 1 + γ ) ξ α - 1 Γ ( α ) ( 1 - β ) ) × ( 1 - β ) Γ ( α + 1 ) 1 - β + α γ ( 1 - β ) η α - 1 + α β ( 1 + γ ) ξ α - 1 a = a

Thus, all conditions of Lemma 3 are satisfied. Hence problem (1-2) has at least three positive solutions u1,u2,u3 satisfying

m a x 0 t 1 | u i ' ( t ) | d ,   i = 1 ,   2 ,   3 ;   b < m i n 0 t η | u 1 ( t ) | ; a < m a x 0 t 1 | u 2 ( t ) | ,   m i n 0 t η | u 2 ( t ) | < b , m a x 0 t 1 | u 3 ( t ) | a .

3 Example

Here we present an example to illustrate the main theorem. Consider the boundary value problem

D 0 + 1.7 u ( t ) + f ( t ,   u ( t ) ,   u ' ( t ) ) = 0 ,   t [ 0 ,   1 ] (5)

u ' ( 0 ) - 0.6 u ' ( 1 4 ) = 0 ,   u ( 1 ) + u ' ( 1 2 ) = 0 (6)

where α=1.7, β=0.6,ξ=14, η=12,γ=1 and

f ( t , u , v ) = { 1 20 e t + 1 π 3 ( u + 1 2 ) 3 + 1 100 s i n ( v 1   000 ) , 0 u 12 1 20 e t + 15625 8 π 3 + 1 100 s i n ( v 1   000 ) , u > 12

By a straightforward calculation, we see that

γ 0 = m i n { 1 - η α - 1 α - 1 + β 1 - β ( 1 + γ - η ) ξ α - 2 + γ η α - 2 1 α - 1 + β 1 - β ( 1 + γ ) ξ α - 2 + γ η α - 2 , 1 - ( η - ξ ) α - 1 ( 1 - ξ ) α - 1 + ( α - 1 ) γ ( η - ξ ) α - 2 , 1 } 0.720   2 .

We choose positive constants a=1, b=5, d=1 000 and check that the nonlinear term f(t, u,v) satisfies

1 )    f ( t , u , v ) ( 1 - β ) Γ ( α ) 1 - β + β ξ α - 1 d 579.3 ,   ( t ,   u ,   v ) [ 0,1 ] × [ 0 ,   2   000 ] × [ - 1   000 ,   1   000 ] ; 2 )    f ( t , u , v ) > ( 1 - β ) Γ ( α + 1 ) γ 0 ( 1 - β + α γ ( 1 - β ) η α - 1 + α β ( 1 + γ ) ξ α - 1 ) b 2.6951 ,   ( t ,   u ,   v ) [ 0 ,   0.5 ] × [ 5 ,   6.942   5 ] × [ - 1   000 ,   1   000 ] ; 3 )    f ( t , u , v ) < ( 1 - β ) Γ ( α + 1 ) 1 - β + α γ ( 1 - β ) η α - 1 + α β ( 1 + γ ) ξ α - 1 a 0.388   2 ,   ( t ,   u ,   v ) [ 0 ,   1 ] × [ 0 ,   1 ] × [ - 1   000 ,   1   000 ] .

Then all assumptions of Theorem 1 are satisfied. Thus problem (5-6) has at least three positive solutions u1(t),u2(t),u3(t) satisfying

m a x 0 t 1 | u i ' ( t ) | 1000 ,   i = 1 ,   2 ,   3 ;   5 < m i n 0 t 1 2 | u 1 ( t ) | ; 1 < m a x 0 t 1 | u 2 ( t ) | ,   m i n 0 t 1 2 | u 2 ( t ) | < 5 , m a x 0 t 1 | u 3 ( t ) | 1 .

Remark   We see that the first order derivative of function u(t) is involved in the nonlinear term of the problem (5-6) explicitly. The early results for positive solutions to this kind of fractional differential equations are not applicable to this problem.

References

  1. Delbosco D. Fractional calculus and function spaces[J]. J Fract Calc, 1994 , 6: 45-53. [MathSciNet] [Google Scholar]
  2. Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York: Wiley, 1993. [Google Scholar]
  3. Lakshmikantham V, Leela S. Theory of fractional differential inequalities and applications[J]. Com Appl Anal, 2007, 11: 395-402. [Google Scholar]
  4. Lakshmikantham V, Devi J. Theory of fractional differential equations in a Banach space[J]. European J Pure Appl Math, 2008(1): 38-45. [Google Scholar]
  5. Lakshmikantham V, Leela S. Nagumo-type uniqueness result for fractional differential equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(7/8): 2886-2889. [CrossRef] [Google Scholar]
  6. Lakshmikantham V, Leela S. A Krasnoselskii-Krein-type uniqueness result for fractional differential equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(7/8): 3421-3424. [CrossRef] [Google Scholar]
  7. Lakshmikantham V. Theory of fractional differential equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(10): 3337-3343. [CrossRef] [MathSciNet] [Google Scholar]
  8. Yu C, Gao G Z. Existence of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2005, 310(1): 26-29. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  9. Zhang S Q. The existence of a positive solution for a nonlinear fractional differential equation[J]. J Math Anal Appl, 2000 , 252(2): 804-812. [CrossRef] [MathSciNet] [Google Scholar]
  10. Zhang S Q. Existence of positive solution for some class of nonlinear fractional differential equation[J] . J Math Anal Appl, 2003, 278(1): 136-148. [CrossRef] [MathSciNet] [Google Scholar]
  11. Feng W, Sun S , Sun Y. Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms[J]. Advances in Differential Equations, 2015, 2015: 350. [CrossRef] [Google Scholar]
  12. Bai Z. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J Math Anal Appl, 2005, 311: 495-505. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  13. Zhang S Q. Positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Electronic Journal of Differential Equations, 2006, 36:1-12. [Google Scholar]
  14. Kosmatov N. A singular boundary value problem for nonlinear differential equations of fractional order[J]. J Appl Math Comput, 2009, 29: 125-135. [CrossRef] [MathSciNet] [Google Scholar]
  15. Xu X J, Jiang D Q, Yuan C J. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equations[J]. Nonlinear Anal TMA, 2009 ,71: 4676-4688. [CrossRef] [Google Scholar]
  16. Su X W. Boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Appl Math Lett, 2009, 22(1): 64-69. [Google Scholar]
  17. Liang S, Zhang J. Positive solutions for boundary value problems of nonlinear fractional differential equation[J]. Nonlinear Analysis, 2009, 71: 5545-5550. [CrossRef] [MathSciNet] [Google Scholar]
  18. Agarwal R P, O'Regan D, Staněk S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2010, 371(1): 57-68. [CrossRef] [MathSciNet] [Google Scholar]
  19. Jiang D Q, Yuan C J. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(2): 710-719. [CrossRef] [MathSciNet] [Google Scholar]
  20. Kaufmann E R, Mboumi E. Positive solutions of a boundary value problem for a nonlinear fractional differential equations[J]. Electron Diff Equ, 2008(3): 1-11. [MathSciNet] [Google Scholar]
  21. El-Shahed M. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Abstract and Applied Analysis , 2007 (2007) :1-8. [CrossRef] [Google Scholar]
  22. Bai Z B, Lü H S. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. Goodrich C. Existence of a positive solution to a class of fractional differential equations[J]. Appl Math Lett, 2010, 23: 1050-1055. [CrossRef] [MathSciNet] [Google Scholar]
  24. Jleli M, Samet B. Existence of positive solutions to a coupled system of fractional differential equations[J]. Math Methods Appl Sci, 2015, 38: 1014-1031. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  25. Ahmad B, Nieto J. Existence results for a coupled system of nonlinear fractional differential of a boundary value problem for a nonlinear fractional differential equation[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2008(3): 1-11. [Google Scholar]
  26. Bai Z B. On positive solutions of a nonlocal fractional boundary value problem[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(2): 916-924. [CrossRef] [MathSciNet] [Google Scholar]
  27. Ahmad B, Sivasundaram S. On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order[J]. Applied Mathematics and Computation, 2010, 217(2): 480-487. [CrossRef] [MathSciNet] [Google Scholar]
  28. Li C F, Luo X N, Zhou Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Computers & Mathematics with Applications, 2010, 59(3): 1363-1375. [CrossRef] [MathSciNet] [Google Scholar]
  29. Zhao X K, Chai C W, Ge W G. Positive solutions for fractional four-point boundary value problems[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(9): 3665-3672. [NASA ADS] [CrossRef] [Google Scholar]
  30. Zhou W X, Chu Y D. Existence of solutions for fractional differential equations with multi-point boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3): 1142-1148. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  31. Ji D, Ge W. Positive solution for four-point nonlocal boundary value problems of fractional order[J]. Math Methods Appl Sci, 2014, 37: 1232-1239. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  32. Salem H A H. On the fractional calculus in abstract spaces and their applications to the Dirichlet-type problem of fractional order[J]. Computers & Mathematics with Applications, 2010, 59(3): 1278-1293. [Google Scholar]
  33. Rehman M, Khan R. Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations[J]. Appl Math Lett, 2010, 23(9): 1038-1044. [CrossRef] [MathSciNet] [Google Scholar]
  34. Li C, Luo X , Zhou Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Comput Math Appl, 2010 , 59: 1363-1375. [CrossRef] [MathSciNet] [Google Scholar]
  35. Kong X S, Li H T, Qin S L, et al. Bifurcation of positive solutions for a three-point boundary-value problem of nonlinear fractional differential equations[J]. J Appl Math Comput, 2017, 54: 81-93. [CrossRef] [MathSciNet] [Google Scholar]
  36. Guezane-Lakoud A, Ashyralyev A. Positive solutions for a system of fractional differential equations with nonlocal integral boundary conditions[J]. Differential Equations and Dynamical Systems, 2017, 25(4): 519-526. [CrossRef] [MathSciNet] [Google Scholar]
  37. Avery R I, Peterson A C. Three positive fixed points of nonlinear operators on ordered Banach spaces[J]. Computers & Mathematics with Applications, 2001, 42(3/4/5): 313-322. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.