Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 4, August 2022
|
|
---|---|---|
Page(s) | 287 - 295 | |
DOI | https://doi.org/10.1051/wujns/2022274287 | |
Published online | 26 September 2022 |
- Delbosco D. Fractional calculus and function spaces[J]. J Fract Calc, 1994 , 6: 45-53. [MathSciNet] [Google Scholar]
- Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York: Wiley, 1993. [Google Scholar]
- Lakshmikantham V, Leela S. Theory of fractional differential inequalities and applications[J]. Com Appl Anal, 2007, 11: 395-402. [Google Scholar]
- Lakshmikantham V, Devi J. Theory of fractional differential equations in a Banach space[J]. European J Pure Appl Math, 2008(1): 38-45. [Google Scholar]
- Lakshmikantham V, Leela S. Nagumo-type uniqueness result for fractional differential equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(7/8): 2886-2889. [CrossRef] [Google Scholar]
- Lakshmikantham V, Leela S. A Krasnoselskii-Krein-type uniqueness result for fractional differential equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(7/8): 3421-3424. [CrossRef] [Google Scholar]
- Lakshmikantham V. Theory of fractional differential equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(10): 3337-3343. [CrossRef] [MathSciNet] [Google Scholar]
- Yu C, Gao G Z. Existence of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2005, 310(1): 26-29. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Zhang S Q. The existence of a positive solution for a nonlinear fractional differential equation[J]. J Math Anal Appl, 2000 , 252(2): 804-812. [CrossRef] [MathSciNet] [Google Scholar]
- Zhang S Q. Existence of positive solution for some class of nonlinear fractional differential equation[J] . J Math Anal Appl, 2003, 278(1): 136-148. [CrossRef] [MathSciNet] [Google Scholar]
- Feng W, Sun S , Sun Y. Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms[J]. Advances in Differential Equations, 2015, 2015: 350. [CrossRef] [Google Scholar]
- Bai Z. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J Math Anal Appl, 2005, 311: 495-505. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Zhang S Q. Positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Electronic Journal of Differential Equations, 2006, 36:1-12. [Google Scholar]
- Kosmatov N. A singular boundary value problem for nonlinear differential equations of fractional order[J]. J Appl Math Comput, 2009, 29: 125-135. [CrossRef] [MathSciNet] [Google Scholar]
- Xu X J, Jiang D Q, Yuan C J. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equations[J]. Nonlinear Anal TMA, 2009 ,71: 4676-4688. [CrossRef] [Google Scholar]
- Su X W. Boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Appl Math Lett, 2009, 22(1): 64-69. [Google Scholar]
- Liang S, Zhang J. Positive solutions for boundary value problems of nonlinear fractional differential equation[J]. Nonlinear Analysis, 2009, 71: 5545-5550. [CrossRef] [MathSciNet] [Google Scholar]
- Agarwal R P, O'Regan D, Staněk S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2010, 371(1): 57-68. [CrossRef] [MathSciNet] [Google Scholar]
- Jiang D Q, Yuan C J. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(2): 710-719. [CrossRef] [MathSciNet] [Google Scholar]
- Kaufmann E R, Mboumi E. Positive solutions of a boundary value problem for a nonlinear fractional differential equations[J]. Electron Diff Equ, 2008(3): 1-11. [MathSciNet] [Google Scholar]
- El-Shahed M. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Abstract and Applied Analysis , 2007 (2007) :1-8. [CrossRef] [Google Scholar]
- Bai Z B, Lü H S. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Goodrich C. Existence of a positive solution to a class of fractional differential equations[J]. Appl Math Lett, 2010, 23: 1050-1055. [CrossRef] [MathSciNet] [Google Scholar]
- Jleli M, Samet B. Existence of positive solutions to a coupled system of fractional differential equations[J]. Math Methods Appl Sci, 2015, 38: 1014-1031. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Ahmad B, Nieto J. Existence results for a coupled system of nonlinear fractional differential of a boundary value problem for a nonlinear fractional differential equation[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2008(3): 1-11. [Google Scholar]
- Bai Z B. On positive solutions of a nonlocal fractional boundary value problem[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(2): 916-924. [CrossRef] [MathSciNet] [Google Scholar]
- Ahmad B, Sivasundaram S. On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order[J]. Applied Mathematics and Computation, 2010, 217(2): 480-487. [CrossRef] [MathSciNet] [Google Scholar]
- Li C F, Luo X N, Zhou Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Computers & Mathematics with Applications, 2010, 59(3): 1363-1375. [CrossRef] [MathSciNet] [Google Scholar]
- Zhao X K, Chai C W, Ge W G. Positive solutions for fractional four-point boundary value problems[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(9): 3665-3672. [NASA ADS] [CrossRef] [Google Scholar]
- Zhou W X, Chu Y D. Existence of solutions for fractional differential equations with multi-point boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3): 1142-1148. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Ji D, Ge W. Positive solution for four-point nonlocal boundary value problems of fractional order[J]. Math Methods Appl Sci, 2014, 37: 1232-1239. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Salem H A H. On the fractional calculus in abstract spaces and their applications to the Dirichlet-type problem of fractional order[J]. Computers & Mathematics with Applications, 2010, 59(3): 1278-1293. [Google Scholar]
- Rehman M, Khan R. Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations[J]. Appl Math Lett, 2010, 23(9): 1038-1044. [CrossRef] [MathSciNet] [Google Scholar]
- Li C, Luo X , Zhou Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Comput Math Appl, 2010 , 59: 1363-1375. [CrossRef] [MathSciNet] [Google Scholar]
- Kong X S, Li H T, Qin S L, et al. Bifurcation of positive solutions for a three-point boundary-value problem of nonlinear fractional differential equations[J]. J Appl Math Comput, 2017, 54: 81-93. [CrossRef] [MathSciNet] [Google Scholar]
- Guezane-Lakoud A, Ashyralyev A. Positive solutions for a system of fractional differential equations with nonlocal integral boundary conditions[J]. Differential Equations and Dynamical Systems, 2017, 25(4): 519-526. [CrossRef] [MathSciNet] [Google Scholar]
- Avery R I, Peterson A C. Three positive fixed points of nonlinear operators on ordered Banach spaces[J]. Computers & Mathematics with Applications, 2001, 42(3/4/5): 313-322. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.