Open Access
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 4, August 2022
Page(s) 281 - 286
Published online 26 September 2022
  1. Blaschke W. Vorlesungen über Integral Geometric I, II [M]. New York: Chelsea, 1949. [Google Scholar]
  2. Hadwiger H. Vorlesungen Über Inhalt, Oberflӓche und Isoperimetrie [M]. Berlin: Springer-Verlag, 1957. [Google Scholar]
  3. Lutwak E. Width-integrals of convex bodies [J]. Proc Amer Math Soc, 1975, 53(2): 435-439. [CrossRef] [MathSciNet] [Google Scholar]
  4. Lutwak E. Mixed width-integrals of convex bodies [J]. Israel J Math, 1977, 28(3): 249-253. [CrossRef] [MathSciNet] [Google Scholar]
  5. Feng Y B. General mixed width-integral of convex bodies [J]. Journal of Nonlinear Sciences and Applications, 2016, 9(6): 4226-4234. [CrossRef] [Google Scholar]
  6. Zhou Y P. General Formula -mixed width-integral of convex bodies and related inequalities [J]. Journal of Nonlinear Sciences and Applications, 2017, 10(8): 4372-4380. [CrossRef] [Google Scholar]
  7. Li X Y, Zhao C J. On the Formula -mixed affine surface area [J]. Math Inequal Appl, 2014, 17: 443-450. [MathSciNet] [Google Scholar]
  8. Lutwak E, Yang D, Zhang G Y. Formula -affine isoperimetric inequalities [J].Journal of Differential Geom, 2000, 56(1): 111-132. [MathSciNet] [Google Scholar]
  9. Wang W D, Ma T Y. Asymmetric Formula -difference bodies [J]. Proc Amer Math Soc, 2014, 142(7): 2517-2527. [CrossRef] [MathSciNet] [Google Scholar]
  10. Wang W D, Feng Y B. A general Formula -version of Petty's affine projection inequality [J]. Taiwan J Math, 2013, 17(2): 517-528. [Google Scholar]
  11. Wang W D, Wan X Y. Shephard type problems for general Formula -projection bodies [J]. Taiwan J Math, 2012, 16(5): 1749-1762. [Google Scholar]
  12. Leng G S, Zhao C J, He B W, et al. Inequalities for polars of mixed projection bodies [J]. Sci China Ser A, 2004, 47(2): 175-186(Ch). [CrossRef] [Google Scholar]
  13. Lutwak E. Dual mixed volumes [J]. Pacific J Math, 1975, 58(2): 531-538. [CrossRef] [MathSciNet] [Google Scholar]
  14. Lutwak E. Inequalities for mixed projection bodies [J]. Trans Amer Math Soc, 1993, 339(2): 901-916. [CrossRef] [MathSciNet] [Google Scholar]
  15. Gardner R J. Geometric Tomography [M]. 2nd Edition. Cambridge: Encyclopedia Math Appl Cambridge University Press, 2006. [CrossRef] [Google Scholar]
  16. Schneider R. Convex Bodies: The Brunn-Minkowski Theory [M]. 2nd Edition. Cambridge: Encyclopedia Math Appl Cambridge University Press, 2014. [Google Scholar]
  17. Lutwak E. The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem [J]. Differential Geom, 1993, 38(1): 131-150. [MathSciNet] [Google Scholar]
  18. Beckenbach E F, Bellman R. Inequalities [M]. 2nd Edition. Berlin: Springer-Verlag , 1965. [CrossRef] [Google Scholar]
  19. Losonczi L, Páles Z S. Inequalities for indefinite forms [J]. Journal of Math Anal Appl, 1997, 205(1): 148-156. [CrossRef] [MathSciNet] [Google Scholar]
  20. Lv S J. Dual Brunn-Minkowski inequality for volume differences [J]. Geom Dedicata, 2010, 145(1): 169-180. [CrossRef] [MathSciNet] [Google Scholar]
  21. Hardy G H, Littlewood J E, Pölya G. Inequalities [M]. New York: Cambridge University Press, 1934. [Google Scholar]
  22. Bechenbach E F, Bellman R. Inequalities [M]. Berlin: Springer-Verlag , 1961. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.