Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 4, August 2022
Page(s) 296 - 302
DOI https://doi.org/10.1051/wujns/2022274296
Published online 26 September 2022
  1. Cayley A. On the theory of groups [J]. Proceedings of the London Mathematical Society, 1878, 9: 126-233. [Google Scholar]
  2. Biggs N. Algebraic Graph Theory [M]. Cambridge: Cambridge University Press, 1993. [Google Scholar]
  3. Godsil C, Royle G F. Algebraic Graph Theory [M]. Berlin: Springer Science and Business Media, 2001. [CrossRef] [Google Scholar]
  4. Grimaldi R P. Graph from rings [J]. Congr Numer, 1990, 71: 95-104. [MathSciNet] [Google Scholar]
  5. Sinha D, Garg P, Singh A. Some properties of unitary additi- on Cayley graphs [J]. Notes on Number Theory and Discrete Mathematics, 2011, 17(3): 49-59. [Google Scholar]
  6. Harary F. On the notion of balance of a signed graph [J]. Michigan Mathematical Journal, 1953, 2(2): 143-146. [Google Scholar]
  7. Behzad M, Chartrand G. Line-coloring of signed graphs [J]. Elemente der Mathematik, 1969, 24(3): 49-52. [Google Scholar]
  8. Acharya M, Sinha D. Common-edge sigraphs [J]. AKCE International Journal of Graphs and Combinatorics, 2006, 3(2): 115-130. [MathSciNet] [Google Scholar]
  9. Harary F. Structural duality [J]. Behavioral Science, 1957, 2(4): 255-265. [Google Scholar]
  10. Iranmanesh M A, Moghaddami N. Some properties of Cayley signed graphs on finite abelian groups [EB/OL]. [2020-11-10]. https://doi.org/10.48550/arXiv.2011.05753. [Google Scholar]
  11. Sinha D, Garg P. On the unitary Cayley signed graphs [J]. The Electronic Journal of Combinatorics, 2011, 18(1): 2290-2296. [Google Scholar]
  12. Hou Y P, Li J S, Pan Y L. On the Laplacian eigenvalues of signed graphs [J]. Linear and Multilinear Algebra, 2003, 51(1): 21-30. [CrossRef] [MathSciNet] [Google Scholar]
  13. Davis J A. Clustering and structural balance in graphs [J]. Human Relations, 1967, 20(2): 181-187. [Google Scholar]
  14. Sinha D, Dhama A. Sign-compatibility of some derived sig- ned graphs [J]. Indian Journal of Mathematics, 2012, 11(4): 1-14. [Google Scholar]
  15. Zaslavsky T. Signed graphs [J]. Discrete Applied Mathematics, 1982, 4(1): 47-74. [CrossRef] [MathSciNet] [Google Scholar]
  16. Sinha D, Dhama A, Acharya B D. Unitary addition Cayley signed graphs [J]. European Journal of Pure and Applied Mathematics, 2013, 6(2): 189-210. [MathSciNet] [Google Scholar]
  17. Zaslavsky T. Matrices in the theory of signed simple graphs [J]. Mathematics, 2013(3): 207-229. [Google Scholar]
  18. Acharya M, Sinha D. A characterization of sigraphs whose line sigraphs and jump sigraphs are switching equivalent [J]. Electronic Notes in Discrete Mathematics, 2003, 15: 12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.