Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 5, October 2023
Page(s) 385 - 391
DOI https://doi.org/10.1051/wujns/2023285385
Published online 10 November 2023

© Wuhan University 2023

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

Let U(n,r) be the q-Schur algebras over Q(v) introduced by Dipper and James[1,2], who have showed that q-Schur algebras play an important role in the investigation of presentation theory of the finite general linear groups. Using a geometric setting for q-Schur algebras, Beilinson-Lusztig-MacPherson[3] realized the quantum enveloping algebra U(n) of gln as a "limit" of q-Schur algebras over Q(v), and they defined an epimorphism ζr from the quantum enveloping algebra U(n) of gln to the q-Schur algebras U(n,r). Then, Du[4] proved that this epimorphism can be applied to any field. For little q-Schur algebras, the definition at odd roots has been obtained, which could be referred to Ref. [5]. Moreover, some results of little q-Schur algebras have been classified in Ref. [6], like simple modules, little q-Schur algebras and finite representation type in the odd roots of unity case. Fu[7] gave the definition of little q-Schur algebras at even unit roots, and explored the related basis and dimension formulas. Therefore, for little q-Schur algebras at any unit roots, the complete classification of representation type has been given by Bian and Liu in Ref. [8].

In the theory of quantum group, it is an important issue to study the presentation of algebras, in other words, to give a set of generators and relations. In addition, the presentation of q-Schur algebras has been obtained in Refs. [9,10]. It is a natural question to present the little q-Schur algebras. Therefore, the presentations obtained from the perspective of monomial basis for little q-Schur algebras uk(2,r), uk(3,3) and uk(3,4) could be respectively referred to Refs. [11,12]. However, with the increase of r, the relations may become increasingly complex.

The goal of this paper is to study the generators and relations for little q-Schur algebra uk(3,5) from the perspective of Poincaré-Birkhoff-Witt (PBW) basis which is helpful to investigate the presentation of uk(3,r). We briefly recall the definitions of q-Schur and little q-Schur algebras in Section 1. In Section 2, we prove that the set Wk is the basis of little q-Schur algebra uk(3,5), and present the relations of uk(3,5).

1 Preliminary

Let v be an indeterminate and A=[v,v-1]. For any integers c, t with t1, let [c]=vc-v-cv-v-1A, [t]!=[1][2][t] and [ct]=s=1tvc-s+1-v-c+s-1vs-v-s=[c]!/[t]![c-t]!A. Let [ct]=0 for t>c0. Let k be a field containing an l'-th primitive root ε of unity with l'>3. Let l>1 be defined by l={l',  if  l'  is oddl'/2, if  l'  is even. In this paper, we put l=3. Specializing v to ε, k will be viewed as an A-module. When v is specialized to ε, [c], [t]! and [ct] specialize to [c]ε, [t]!ε and [ct]ε.

For quantum enveloping algebra of gln, U(n) defined on Q(v) has been generated by the elements Ei,Fi (1in-1), Kj, Kj-1(1jn) and satisfies the corresponding relations referred to Section 3.2 of Ref. [13]. Set Kij=KiKj-1(1ijn)U0(n) and define the root vectors in U(n) as follows. If j-i=1, then set Ei,j=Ei,Fj,i=Fi. For j-i>1, inductively set Ei,j=v-1EiEi+1,j-Ei+1,jEi, Fj,i=vFj,i+1Fi-FiFj,i+1. There is an isomorphism Ω: U(n)U(n)opp[14] defined by Ω(Ei)=Fi, Ω(Fi)=Ei, Ω(Ki)=Ki-1, Ω(v)=v-1. Then obviously Ω(Ei,j)=Fj,i.

Following Refs. [15,16], let UA(n) (respectively,UA+(n), UA-(n), UA0(n)) be theA-subalgebra of U(n) generated by all Ei(m),Fi(m),Kj and [Kj; 0t] (respectively, Ei(m), Fi(m), Kj and [Kj; 0t]), where for m, tN, cZ. Let

E i ( m ) = E i m [ m ] ! ,   F i ( m ) = F i m [ m ] ! ,   [ K j ;   c t ] = s = 1 t K j v c - s + 1 - K j - 1 v - c + s - 1 v s - v - s .

Let Uk(n)=UA(n)Ak, we denote the image of Ei1, Fi1,and Kj1 in Uk(n) by Ei, Fi, and Kj. Let u˜k(n) be the k-subalgebra of Uk(n) generated by the elements Ei, Fi, Kj±1 for all i, j. Let u˜k(n)+, u˜k(n)0, u˜k(n)- be the k-subalgebras of u˜k(n) generated respectively by the elements Ei, Kj±1 and Fi by Ref. [16].

When l' is odd, the elements Kil-1 are the central in u˜k(n). They generate an ideal <K1l-1,,Knl-1> of u˜k(n). Let uk(n)=u˜k(n)/<K1l-1,,Knl-1> and we call uk(n) the infinitesimal quantum group of gln. The presentation for uk(n) was given in Ref. [10]. When l' is even, there is no definition for infinitesimal quantum group of gln. Let UA(n,r) be the algebra over A introduced in Ref. [3]. It is shown to be naturally isomorphic to the q-Schur algebra in Ref. [4]. Put U(n,r)=UA(n,r)AQ(v), we shall call UA(n,r) and U(n,r)q-Schur algebras. There is an algebra epimorphism ζr:U(n)U(n,r) which could be referred to Refs. [3]. Let [ki;cti]=ζr([Ki;cti]) and kt=i=1n[ki; 0ti], for t=(t1,,tn)n. Moreover, we have ζr(UA(n))=UA(n,r)[4]. Let Λ(n,r)={λn|λ1+λ2++λn=r}. Let Φ be the root system of type An-1:Φ={εi-εj|1ijn}. Here the εi form the standard orthonormal basis of the Euclidean space Rn. Let ( , ) denote the inner product on this space and define simple roots αi=εi-εi+1 and positive roots αij=εi-εj.

Theorem 1[10] The q-Schur algebras U(n,r) are generated by the elements ei, fi(1in-1), kλ(λΛ(n,r)), subject to the following relations:

( R 1 )   λ Λ ( n , r ) k λ = 1 ,   k λ k μ = δ λ μ k λ ;

( R 2 )    e i f j - f j e i = δ i j λ Λ ( n , r ) [ λ i - λ i + 1 ] k λ ;

( R 3 )    e i 2 e j - ( v + v - 1 ) e i e j e i + e j e i 2 = 0 ,   w h e n   | i - j | = 1 ;

( R 4 )    f i 2 f j - ( v + v - 1 ) f i f j f i + f j f i 2 = 0 ,   w h e n   | i - j | = 1 ;

          ( R 5 )    e i k λ = { k λ + α i e i   , i f     λ + α i Λ ( n , r ) 0   , o t h e r w i s e   , k λ e i = { e i k λ - α i   , i f     λ - α i Λ ( n , r ) 0   , o t h e r w i s e   ;

( R 6 )     f i k λ = { k λ - α i f i   , i f     λ - α i Λ ( n , r ) 0   , o t h e r w i s e   , k λ f i = { f i k λ + α i   , i f     λ + α i Λ ( n , r ) 0   , o t h e r w i s e

Let Ξ˜(n) be the set of all n×n matrices over Z with all off-diagonal entries in N. Let Ξ(n)=Mn() be the subset of Ξ˜(n) consisting of matrices with entries all in N, and let σ: Ξ(n) to be the map sending a matrix to the sum of its entries. Then, for r, the inverse image Ξ(n,r):=σ-1(r) is the subset of Ξ(n) whose entries sum to r. For 1i,jn, let Ei,jΞ(n) be the matrix (as,t) with as,t=δi,sδj,t. Let Ξ(n)± be the set of all AΞ(n) whose diagonal entries are zero. Let Γ be the set of all A=(ai,j)Ξ(n) such that ai,j<l for all ij and Γ± be the set of all AΓ whose diagonal entries are zero. Let Γm±=Γm++Γm- be the set of all A±=A++A-Γ± such that σi(A)=0 for im with σi(A)=ai,i+1j<i(ai,j+aj,i). Let co(A)=(iai,1,iai,2,,iai,n), ro(A)=(ja1,j,ia2,j,,ian,j).

Similar to monomial basis for q-Schur algebra U(n,r)[10], we give the following definition. For AΞ±(n), put

E c ( A + ) = 1 i h < j n E i , j ( a i , j ) , F c ( A - ) = 1 j h < i n F j , i ( a j , i )

The orders in which the products Ec(A+) and Fc(A-) are taken are respectively defined as follows. Put

E c ( A + ) = O 2 O 3 O n , F c ( A - ) = O n ' O n - 1 ' O 2 ' ,

where Oj=E1,j(a1,j)E2,j(a2,j)Ej-1,j(aj-1,j), Oj'=Fj,j-1(aj,j-1)Fj,j-2(aj,j-2)Fj,1(aj,1).

Let ei,j=ζr(Ei,j), fj,i=ζr(Fj,i), ks=ζr(Ks) for 1ijn-1 and 1sn, then we have

e c ( A + ) = ζ r ( E c ( A + ) ) ,   f c ( A - ) = ζ r ( F c ( A - ) ) .

Proposition 1[9] 1) For any λΛ(n,r), we have

e i , j k λ = { k λ + α i j e i , j   , i f    λ + α i j Λ ( n , r ) 0   , o t h e r w i s e k λ e i , j = { e i , j k λ - α i j   , i f    λ - α i j Λ ( n , r ) 0   , o t h e r w i s e

and similar results for fj,i can be obtained by applying the isomorphism Ω.

2) Let λΛ(n,r), then kikλ=vλikλ,[ki;ct]kλ=[λi+ct]kλ for 1in.

Theorem 2[9] The set W :={ec(A+)kλfc(A-)λΛ(3,5), λiσi(A) for all i, AΓ±} forms a basis for q-Schur algebra UA(3,5).

Let Uk(n,r)=UA(n,r)Ak, hence ζr naturally induces a surjective homomorphism

ζ r , k : = ζ r i d :   U k ( n ) = U A ( n ) A k U k ( n , r )

When l' is odd, since kil=λΛ(n,r)kilkλ=λΛ(n,r)ελilkλ=1, ζr naturally induces a map from uk(n) to Uk(n,r). We call the image ζr,k(uk(n)) the little q-Schur algebra and denote it by uk(n,r). When l' is even, by restriction, we also get a map ζr,k: u˜k(n)Uk(n,r), then uk(n,r)=ζr,k(u˜k(n)). By abuse of notations, we shall continue to denote the images of the generators Ei, Fi, Ki for u˜k(n) by the same letters ei, fi, ki used for Uk(n,r).

Let uk(n,r)+=ζr,k(u˜k(n)+) (resp,ζr,k(uk(n)+)),uk(n,r)-=ζr,k(u˜k(n)-) (resp,ζr,k(uk(n)-)),uk(n,r)0=ζr,k(u˜k(n)0) (resp,ζr,k(uk(n)0)). For a positive integer m, let Zm=Z/mZ, set

¯ : n ( l ' ) n

be the map defined by (j1,j2,,jn)¯=(j1¯,j2¯,,jn¯).

Let Λ(n,r)¯={λ¯(l')n|λΛ(n,r)}. For λ¯(l')n, define

P λ ¯ = { μ Λ ( n , r ) , μ ¯ = λ ¯ k μ   , i f   λ ¯ Λ ( n , r ) ¯ 0   , o t h e r w i s e

Proposition 2[10] For AΓ±, λΛ(n,r),

1) If there exist μΛ(n,r), μiσi(A+) for all i and μ¯=λ¯, then ec(A+)Pλ¯=Pλ¯'ec(A+) where λ'¯=λ-co(A+)+ro(A+)¯ otherwise, ec(A+)Pλ¯=0.

2) If there exist μΛ(n,r), μiσi(A-) for all i and μ¯=λ¯, then Pλ¯fc(A-)=fc(A-)Pλ¯' where λ'¯=λ-co(A+)+ro(A+)¯; otherwise, Pλ¯fc(A-)=0.

2 The Little q-Schur Algebra uk(3,5)

Theorem 3   The set Wk:={ec(A+)Pλ¯fc(A-)λΛ(3,5),λiσi(A) for all i, AΓ±} forms a basis for uk(3,5).

Proof   Fix AΓ± satisfying λiσi(A) for all i. By the definition of Pλ¯, we have

e c ( A + ) P λ ¯ f c ( A - ) = λ ¯ = μ ¯ , i , μ i σ i ( A ) e c ( A + ) k μ f c ( A - ) + λ ¯ = μ ' ¯ , i , μ i ' < σ i ( A ) e c ( A + ) k μ ' f c ( A - )

In the q-Schur algebra UA(3,5), for any ec(A+)kμ'fc(A-), if μi'<σi(A) for some i, then it lies in the span of W in the Theorem 2. Then we have

λ ¯ = μ ' ¯ , i , μ i ' < σ i ( A ) e c ( A + ) k μ ' f c ( A - ) = B Γ ± σ i ( B ) < σ i ( A ) , μ i ' σ i ( B ) f B , A   e c ( B + ) k μ '   f c ( B - ) ( f B , A k )

By Theorem 2, the elements above are linearly independent, thus the set Wk is linearly independent.

Assume that i<j, m<l. Inspired by Ref.[17], we have the following commutation formulas in the q-Schur algebras U(n,r).

( 2.1 a )     e i , j ( M ) e m , l ( N ) = v - M N e m , l ( N ) e i , j ( M ) ,   i = m < j < l   o r   i < m < j = l

( 2.1 b )     e i , j ( M ) e m , l ( N ) = t = 0 m i n ( M , N ) v ( M - t ) ( N - t ) + t   e m , l ( N - t ) e i , l ( t ) e i , j ( M - t ) ,   j = m

( 2.1 c )     f j , i ( M ) f l , m ( N ) = v M N f l , m ( N ) f j , i ( M ) ,   i = m < j < l   o r   i < m < j = l

( 2.1 d )     f j , i ( M ) f l , m ( N ) = t = 0 m i n ( M , N ) v - ( M - t ) ( N - t ) - t f l , m ( N - t ) f l , i ( t ) f j , i ( M - t ) , j = m

( 2.1 e )     e i , j ( M ) f l , m ( N ) = t = 0 m i n ( M , N ) ( - 1 ) t v t ( M - t ) f l , j ( t ) f l , m ( N - t ) k i j - t e i , j ( M - t ) ,   i = m < j < l

( 2.1 f )      e i , j ( M ) f j , i ( N ) = t = 0 m i n ( M , N ) f j , i ( N - t ) [ k i j ; 2 t - M - N t ]   e i , j ( M - t ) ,   i = m ,   j = l

( 2.1 h )     f j , i ( M ) e m , l ( N ) = t = 0 m i n ( M , N ) v t ( N - t - 1 ) e m , j ( N - t ) k m j t f j , i ( M - t ) f m , i ( t ) ,   i < m < j = l

( 2.1 g )     f j , i ( M ) e i , j ( N ) = t = 0 m i n ( M , N ) e i , j ( N - t ) [ k i j - 1 ; 2 t - M - N t ] f j , i ( M - t ) , i = m ,   j = l

Lemma 1   In the little q-Schur algebra uk(3,5), for AjΓj±, λΛ(3,5) satisfying λj=σj(A)-1 for ij, λi<l', we have Pμ¯fc(Aj-)ec(Aj+)=0, where μΛ(3,5),  μj=σj(Aj-)-1 and μi=λi+ai,j, if i<j; μi<l', if i>j.

Proof   For ec(Aj)P(λ1¯,λ2¯,λ3¯)fc(Aj) where λj=σj(A)-1, and λi<l' if ij. We may assume ai,j>0, aj,i>0 for all 1i<j3. By the definition of uk(3,5)0 and commutation formulas between positive root vectors, it is enough to show for all 1i<j3,

k μ ' f c ( A j - ) e c ( A j + ) = 0 ,   w h e r e   μ m ' = { μ m        , m i , m j μ m - 3 , m = i μ m + 3 , m = j

Here, we no longer discuss the situations of Pλ¯fc(A-)=0 in 2) of Proposition 2 alone.We consider e1,3(a1,3)e2,3(a2,3)P(λ1¯,λ2¯,λ3¯)f3,2(a3,2)f3,1(a3,1), where λ3=σ3(A)-1, then

Case 1 i=1,j=3. It is supposed that a1,3<a3,1, according to the commutation formula (2.1g), we get

k μ ' f c ( A 3 - ) e c ( A 3 + ) = k ( μ 1 - 3 , μ 2 , μ 3 + 3 ) f 3,2 ( a 3,2 ) f 3,1 ( a 3,1 ) e 1,3 ( a 1,3 ) e 2,3 ( a 2,3 )                        = f 3,2 ( a 3,2 ) k ( μ 1 - 3 , μ 2 + a 3,2 , μ 3 + 3 - a 3,2 ) f 3,1 ( a 3,1 ) e 1,3 ( a 1,3 ) e 2,3 ( a 2,3 )                        = f 3,2 ( a 3,2 ) k ( μ 1 - 3 , μ 2 + a 3,2 , μ 3 + 3 - a 3,2 ) t = 0 m i n ( a 1,3 , a 3,1 ) e 1,3 ( a 1,3 - t ) [ k 13 - 1 ; 2 t - a 1,3 - a 3,1 t ] ε f 3,1 ( a 3,1 - t ) e 2,3 ( a 2,3 )

Thus, there exist some n1(0n1a1,3) such that μ1-3=a1,3-n1.

Case 1-1 If μ1-3<a1,3-n1(t<n1), by Proposition 1(1), it follows k(μ1-3,μ2+a3,2,μ3+3-a3,2)e1,3(a1,3-t)=0;

Case 1-2 If μ1-3a1,3-n1(tn1), i.e. ta1,3-(μ1-3), then we have

k ( μ 1 - 3 , μ 2 + a 3,2 , μ 3 + 3 - a 3,2 ) e 1,3 ( a 1,3 - t ) [ k 13 - 1 ;   2 t - a 1,3 - a 3,1 t ] ε f 3,1 ( a 3,1 - t ) = e 1,3 ( a 1,3 - t ) k ( μ 1 - 3 - ( a 1,3 - t ) , μ 2 + a 3,2 , μ 3 + 3 - a 3,2 + a 1,3 - t ) [ k 13 - 1 ;   2 t - a 1,3 - a 3,1 t ] ε f 3,1 ( a 3,1 - t )

By 2) of Proposition 1 and μ3=a3,2+a1,3-1, we also obtain

     k ( μ 1 - 3 - ( a 1,3 - t ) , μ 2 + a 3,2 , μ 3 + 3 - a 3,2 + a 1,3 - t ) [ k 13 - 1 ;   2 t - a 1,3 - a 3,1 t ] ε = [ μ 3 + 3 - a 3,2 + a 1,3 - t - μ 1 + 3 + ( a 1,3 - t ) + 2 t - a 1,3 - a 3,1 t ] ε k ( μ 1 - 3 - ( a 1,3 - t ) , μ 2 + a 3,2 , μ 3 + 3 - a 3,2 + a 1,3 - t ) = [ 2 + a 1,3 - ( μ 1 - 3 ) t ] ε k ( μ 1 - 3 - ( a 1,3 - t ) , μ 2 + a 3,2 , μ 3 + 3 - a 3,2 + a 1,3 - t ) .

When s=a1,3-(μ1-3), we have [2+a1,3-(μ1-3)t]ε=0.

Case 2 i=2, j=3, assuming a2,3<a3,2, by the commutation formulas (2.1a), (2.1c) and (2.1g), we have

k μ ' f c ( A 3 - ) e c ( A 3 + ) = k ( μ 1 , μ 2 - 3 , μ 3 + 3 ) f 3,2 ( a 3,2 ) f 3,1 ( a 3,1 ) e 1,3 ( a 1,3 ) e 2,3 ( a 2,3 ) = ε c 1 k ( μ 1 , μ 2 - 3 , μ 3 + 3 ) f 3,1 ( a 3,1 ) f 3,2 ( a 3,2 ) e 1,3 ( a 1,3 ) e 2,3 ( a 2,3 ) = ε c 1 f 3,1 ( a 3,1 ) k ( μ 1 + a 3,1 , μ 2 - 3 , μ 3 + 3 - a 3,1 ) f 3,2 ( a 3,2 ) e 1,3 ( a 1,3 ) e 2,3 ( a 2,3 ) = ε c 2 f 3,1 ( a 3,1 ) k ( μ 1 + a 3,1 , μ 2 - 3 , μ 3 + 3 - a 3,1 ) f 3,2 ( a 3,2 ) e 2,3 ( a 2,3 ) e 1,3 ( a 1,3 ) = ε c 2 f 3,1 ( a 3,1 ) k ( μ 1 + a 3,1 , μ 2 - 3 , μ 3 + 3 - a 3,1 ) t = 0 m i n ( a 2,3 , a 3,2 ) e 2,3 ( a 2,3 - t ' ) [ k 23 - 1 ; 2 t ' - a 2,3 - a 3,2 t ' ] f 3,2 ( a 3,2 - t ' ) e 1,3 ( a 1,3 ) .

Similarly, there exist some n2(0n2a2,3) such that μ2-3=a2,3-n2.

Case 2-1 If μ2-3<a2,3-n2(t'<n2), by Proposition 1 1), it follows that k(μ1+a3,1,μ2-3,μ3+3-a3,1)e2,3(a1,3-t')=0;

Case 2-2 If μ2-3a2,3-n2(t'n2), namely t'a2,3-(μ2-3), then we have

k ( μ 1 + a 3,1 , μ 2 - 3 , μ 3 + 3 - a 3,1 ) e 2,3 ( a 2,3 - t ' ) [ k 23 - 1 ; 2 t ' - a 2,3 - a 3,2 t ' ] ε f 3,2 ( a 3,2 - t ' ) = e 2,3 ( a 2,3 - t ' ) k ( μ 1 + a 3,1 , μ 2 - 3 - ( a 3,2 - t ' ) , μ 3 + 3 - a 3,1 + a 2,3 - t ' ) [ k 23 - 1 ; 2 t ' - a 2,3 - a 3,2 t ' ] ε f 3,2 ( a 3,2 - t ' )

then

e 2,3 ( a 2,3 - t ' ) k ( μ 1 + a 3,1 , μ 2 - 3 - ( a 3,2 - t ' ) , μ 3 + 3 - a 3,1 + a 2,3 - t ' ) [ k 23 - 1 ; 2 t ' - a 2,3 - a 3,2 t ' ] ε = [ μ 3 + 3 - a 3,1 + a 2,3 - t ' - μ 2 + 3 + ( a 2,3 - t ' ) + 2 t ' - a 2,3 - a 3,2 t ' ] ε k ( μ 1 + a 3,1 , μ 2 - 3 - ( a 3,2 - t ' ) , μ 3 + 3 - a 3,1 + a 2,3 - t ' ) = [ 2 + a 2,3 - ( μ 2 - 3 ) t ' ] ε k ( μ 1 + a 3,1 , μ 2 - 3 - ( a 3,2 - t ' ) , μ 3 + 3 - a 3,1 + a 2,3 - t ' )

When s'=a2,3-(μ2-3), we also find [2+a2,3-(μ2-3)t']ε=0.

For e1,2(a1,2)P(λ1¯,λ2¯,λ3¯)f2,1(a2,1) where λ2=σ2(A)-1, the proof is similar to the above, thus we need not to give. Then we complete the proof of Lemma 1.

Theorem 4   The little q-Schur algebra uk(3,5) can be generated by the elements ei, fi(1i2), Pλ¯(λΛ(3,5)) subject to the following relations:

( L R 1 ) e l = 0 , f l = 0 ;

( L R 2 ) λ ¯ Λ ( 3,5 ) ¯ P λ ¯ = 1 , P λ ¯ P μ ¯ = δ λ μ P λ ¯ ;

( L R 3 ) e i f i - f i e i = δ i j λ Λ ( 3,5 ) [ λ i - λ i + 1 ] ε P λ ¯ ;

( L R 4 ) e i 2 e j - ( v + v - 1 ) e i e j e i + e j e i 2 = 0   w h e n   | i - j | = 1 ;

( L R 5 ) f i 2 f j - ( v + v - 1 ) f i f j f i + f j f i 2 = 0   w h e n   | i - j | = 1 ;

( L R 6 ) e i P λ ¯ = { P μ + α i ¯ e i   , i f       μ ¯ = λ ¯ , μ i + 1 1 0   , o t h e r w i s e , P λ ¯ e i = { e i P μ - α i ¯   , i f       μ ¯ = λ ¯ , μ i 1 0   , o t h e r w i s e ;

( L R 7 ) f i P λ ¯ = { P μ - α i ¯ f i   , i f       μ ¯ = λ ¯ , μ i 1 0   , o t h e r w i s e , P λ ¯ f i = { f i P μ + α i ¯   , i f       μ ¯ = λ ¯ , μ i + 1 1 0   , o t h e r w i s e ;

( L R 8 ) e c ( A j + ) P λ ¯ = 0 (resp. Pλ¯fc(Aj-)=0) for Aj+Γj+ (resp. Aj-Γj-) and λΛ(3,5) satisfies that if μΛ(3,5) with μ¯=λ¯ then μj<σj(A);

( L R 9 ) For AjΓj±, λΛ(3,5) with λj=σj(A)-1 for ij, λi<l', then Pμ¯fc(Aj-)ec(Aj+)=0, where μΛ(3,5) satisfies μj=σj(Aj-)-1 and μi=λi+ai,j if i<j, μi<3 if i>j.

We define an algebra S which satisfies the generators and relations given in Theorem 4. Set S+ (resp. S-,S0) be the subalgebra generated by ei (resp. fi,Pλ¯). For S, we give the root vectors, which satisfy the commutation formulas (2.1a)-(2.1h) in the same way. According to the relations (LR3)-(LR7) in Theorem 4, we know that S=S+S0S- can be spanned by all the elements WA,λ¯:=ec(A+)Pλ¯fc(A-), AΓ±.

Proposition 3   The set Wk={ec(A+)Pλ¯fc(A-)λΛ(3,5), λiσi(A) for all i, AΓ±} is a spanning set for S.

Proof   Fixing BΓ±, to prove this proposition, it suffices to show that if λ'Λ(3,5) with λ'¯=λ¯, satisfying λj'<σj(B) for some j, then WB,λ'¯=ec(B+)Pλ¯'fc(B-) lies in the span of Wk. Here Wka(aN+) is a linear combination of the elements in Wk and ga(aN+) is a constant.

Case 1 If λ2'<σ2(B) and λ3'σ3(B), assuming λ2'=σ2(B)-1, for ec(B+)Pλ'¯fc(B-), by the commutation formulas (2.1a)-(2.1d), we have

e c ( B + ) P λ ' ¯ f c ( B - ) = e 1,2 ( b 1,2 ) e 1,3 ( b 1,3 ) e 2,3 ( b 2,3 ) P λ ' ¯ f 3,2 ( b 3,2 ) f 3,1 ( b 3,1 ) f 2,1 ( b 2,1 ) = ε g 1 e 1,3 ( b 1,3 ) e 2,3 ( b 2,3 ) ( e 1,2 ( b 1,2 ) P λ ' ¯ f 2,1 ( b 2,1 ) ) f 3,2 ( b 3,2 ) f 3,1 ( b 3,1 ) + W k 1

Therefore, we only need to consider ec(B2+)Pλ¯'fc(B2-).

e 1,2 ( b 1,2 ) P λ ¯ ' f 2,1 ( b 2,1 ) = P ( λ 1 ' + b 1,2 ¯ , λ 2 ' - b 1,2 ¯ , λ 3 ' ¯ ) e 1,2 ( b 1,2 ) f 2,1 ( b 2,1 ) = ε g 2 P ( λ 1 ' + b 1,2 ¯ , σ 2 ( B 2 - ) - 1 ¯ , λ 3 ' ¯ ) f 2,1 ( b 2,1 ) e 1,2 ( b 1,2 ) + W k 2 = ε g 2 P μ ¯ f 2,1 ( b 2,1 ) e 1,2 ( b 1,2 ) + W k 2

By Lemma 1, we have Pμ¯f2,1(b2,1)e1,2(b1,2)=0 when j=2, then we obtain that ec(B2+)Pλ¯'fc(B2-) is a linear combination of the elements in Wk.

Case 2 If λ3'<σ3(B), there is an assumption that λ3'=σ3(B)-1 and λ2'σ2(B). Then, we only need to consider ec(B3+)Pλ¯'fc(B3-). By the commutation formulas (2.1f) and (2.1h), we have

e 1,3 ( b 1,3 ) e 2,3 ( b 2,3 ) P λ ' ¯ f 3,2 ( b 3,2 ) f 3,1 ( b 3,1 ) = P ( λ 1 ' + b 1,3 ¯ , λ 2 ' - b 2,3 ¯ , λ 3 ' - b 1,3 - b 2,3 ¯ ) e 1,3 ( b 1,3 ) e 2,3 ( b 2,3 ) f 3,2 ( b 3,2 ) f 3,1 ( b 3,1 )    = ε g 3 P ( λ 1 ' + b 1,3 ¯ , λ 2 ' - b 2,3 ¯ , b 3,2 + b 3,1 - 1 ¯ ) f 3,2 ( b 3,2 ) f 3,1 ( b 3,1 ) e 1,3 ( b 1,3 ) e 2,3 ( b 2,3 ) + W k 3    = ε g 3 P μ ¯ f c ( B 3 - ) e c ( B 3 + ) + W k 3 .

By Lemma 1, when j=3, we have Pμ¯fc(B3-)ec(B3+)=0. Hence,

e c ( B + ) P λ ' ¯ f c ( B - ) = e 1,2 ( b 1,2 ) ( e 1,3 ( b 1,3 ) e 2,3 ( b 2,3 ) P λ ' ¯ f 3,2 ( b 3,2 ) f 3,1 ( b 3,1 ) ) f 2,1 ( b 2,1 ) = ε g 3 e 1,2 ( b 1,2 ) ( P μ ¯ f c ( B 3 - ) e c ( B 3 + ) ) f 2,1 ( b 2,1 ) + W k 3 ' = W k 3 ' .

When λ2'<σ2(B) appears in Wk3', we only require to exchange e1,2(b1,2) (resp. f2,1(b2,1)) and other ei,j(bi,j) (resp. fj,i(bj,i)) into the Case 1 via commutation formulas. Finally, we give the proof of Theorem 4.

The proof of Theorem 4 By the definition of S and Theorem 1, it is clear that S satisfies the relations (R1)-(R6). Hence, there is a surjective algebra homomorphism from S to U(3,5). On the foundations of Proposition 1, Proposition 2 and Lemma 1, we have the uk(3,5) that satisfies the relations in Theorem 4. And according to the definition of uk(3,5), there is a surjective algebra homomorphism ψ from S to uk(3,5) satisfying ψ(ei)=ei, ψ(fi)=fi, ψ(Pλ¯)=Pλ¯. On the other hand, by Proposition 3, we see that the map ψ sends the spanning set of S to the basis of uk(3,5). Hence ψ is an isomorphism.

Remark 1   For the presentation of little q-Schur algebra uk(3,5) in this paper, if we only consider λj<σj(A) for some j, then the relation (LR9) in Theorem 4 is more general than the relations (i), (j1) and (j2) in Ref.[12,3]. As r becomes increasingly great, we need to consider several λj<σj(A) at the same time. Then there may be other more complex relations. For example, when r=6 the relation e1,2e1,3P(2¯,3¯,1¯)f3,1f2,1=0 cannot be obtained by the relations (LR1)-(LR9). In conclusion, it is more difficult to study the generators and relations for uk(3,r).

References

  1. Dipper R, James G. The q-Schur algebras[J]. Proceedings of the London Mathematical Society, 1989, 59(1): 23-50. [Google Scholar]
  2. Dipper R, James G. q-Tensor spaces and q-Weyl modules[J]. Transactions of the American Mathematical Society, 1991, 327(1): 251-282. [MathSciNet] [Google Scholar]
  3. Beilinson A A, Lusztig G, Macpherson R. A geometric setting for the quantum deformation of Formula [J]. Duke Mathematical Journal, 1990, 61(2): 655-677. [CrossRef] [MathSciNet] [Google Scholar]
  4. Du J E. A note on the quantized Weyl reciprocity at roots of unity[J]. Algebra Colloquium, 1995, 2(4): 363-372. [MathSciNet] [Google Scholar]
  5. Du J E, Fu Q A, Wang J P. Infinitesimal quantum Formula and little q-Schur algebras[J]. Journal of Algebra, 2005, 287(1): 199-233. [CrossRef] [MathSciNet] [Google Scholar]
  6. Du J E, Fu Q A, Wang J P. Representations of little q-Schur algebras[J]. Pacific Journal of Mathematics, 2012, 257(2): 343-377. [CrossRef] [MathSciNet] [Google Scholar]
  7. Fu Q A. Little q-Schur algebras at even roots of unity[J]. Journal of Algebra, 2007, 311(1): 202-215. [CrossRef] [MathSciNet] [Google Scholar]
  8. Bian Z H, Liu M Q. Representation type of the little q-Schur algebras[J]. Journal of Pure and Applied Algebra, 2020, 224(8): 106349. [CrossRef] [MathSciNet] [Google Scholar]
  9. Doty S, Giaquinto A. Presenting Schur algebras[J]. International Mathematics Research Notices, 2002, 2002(36): 1907-1944. [CrossRef] [Google Scholar]
  10. Du J E, Parshall B. Monomial bases for q-Schur algebras[J]. Transactions of the American Mathematical Society, 2003, 355(4): 1593-1620. [MathSciNet] [Google Scholar]
  11. Bian Z H, Liu M Q. Presenting little q-Schur algebras Formula [J]. Algebra Colloquium, 2017, 24(2): 297-308. [CrossRef] [MathSciNet] [Google Scholar]
  12. Gao W T, Liu M Q. The generators and relations for little q-Schur algebra Formula [J]. Acta Mathematica Scientia (Chinese Series), 2022, 65(5): 819-826(Ch). [MathSciNet] [Google Scholar]
  13. Takeuchi M. Some topics on Formula [J]. Journal of Algebra, 1992, 147(2): 379-410. [CrossRef] [MathSciNet] [Google Scholar]
  14. Jimbo M. A q-analogue of Formula , Hecke algebras, and the Yang-Baxter equation[J]. Letters in Mathematical Physics, 1986, 11(3): 247-252. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  15. Lusztig G. Canonical bases arising from quantized enveloping algebras[J]. Journal of the American Mathematical Society, 1990, 3(2): 447-498. [CrossRef] [MathSciNet] [Google Scholar]
  16. Lusztig G. Finite dimensional Hopf algebras arising from quantized universal enveloping algebras[J]. Journal of the American Mathematical Society, 1990, 3(1): 257-296. [MathSciNet] [Google Scholar]
  17. Xi N H. Root vectors in quantum groups[J]. Commentarii Mathematici Helvetici, 1994, 69(1): 612-639. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.