Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
Page(s) 529 - 538
DOI https://doi.org/10.1051/wujns/2024296529
Published online 07 January 2025

© Wuhan University 2024

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

In many statistical models, it is unrealistic to assume that random variables are independent, so many scholars have extended the independent random variables to dependent random variables, for example, negatively associated (NA) random variables, negatively orthant dependent (NOD) random variables, and extend negatively dependent (END) random variables and so on.

The widely orthant dependent (WOD) random variables sequences are very important dependent sequences, which was introduced by Wang et al[1].

Definition 1   The random variables {Xn,n1} are called to be widely upper orthant dependent (WUOD) random variables, if there exists a finite sequence of real numbers {gU(n),n1} such that for each n1, x1,x2,,xnR,

P ( X 1 > x 1 , X 2 > x 2 , , X n > x n ) g U ( n ) i = 1 n P ( X i > x i ) . (1)

The random variables {Xn,n1} are called to be widely lower orthant dependent (WLOD) random variables, if there exists a finite sequence of real numbers {gL(n),n1} such that for each x1,x2,,xnR,

P ( X 1 x 1 , X 2 x 2 , , X n x n ) g L ( n ) i = 1 n P ( X i x i ) . (2)

The random variables {Xn,n1} are called to be WOD random variables, if the random variables {Xn,n1} are both WUOD and WLOD, g(n)=max{gU(n),gL(n)} are called dominated coefficients.

Inspired by m-NA and WOD, the concept of m-WOD random variables was introduced by Fang et al[2], as follows:

Definition 2   For fix integer m1, the random variables {Xn,n1} is called to be m-WOD if for any n2, i1,i2,,inN+, such that |ik-ij|m for all 1kjn, the Xi1,Xi2,,Xin also are WOD random variables.

From (1) and (2), we have gU(n)1,gL(n)1. If gU(n)=gL(n)=1, then WOD random variables are NOD random variables, which were introduced by Ebrahimi and Ghosh[3]. If gU(n)=gL(n)=M1, then WOD random variables are END random variables, which were introduced by Liu[4]. Liu[4] pointed out the END random variables imply NA and positive random variables, so m-WOD random variables include independent random variables, WOD, m-NA, m-NOD, m-END random variables and so on. Therefore, it is interesting to investigate complete convergence of the maximal partial sums for m-WOD random variables.

The real number sequences {an,-<n<} satisfy i=-|ai|<, the {Xn,n1} are called to be moving average process under random variables sequences {Yn,-<n<}, if

X n = i = - a i Y n + i , n 1 . (3)

Since the moving average process was proposed,many results about convergence properties have been obtained. When {Yn,-<n<} is identically distributed, many results have been gained, for example[5-8]. Recently, some results have been obtained under the sequence {Yn,-<n<} are dependent. For example, Li et al[9] investigated the convergence properties under ρ-mixing assumptions; Zhang[10] and Chen et al[11] established complete convergence under φ-mixing assumptions; Song and Zhu[12] got the complete convergence of moving average process based on ρ--mixing assumptions; Tao et al[13] discussed the complete convergence under WOD random variables; Guan et al[14] obtained the complete moment convergence under m-WOD random variables.

In this paper, based on the research of Guan et al[14], we study the complete cmoment convergence of moving average processes based on m-WOD random variables, the results extend and improve the corresponding ones under WOD, m-NA, m-NOD, m-END random variables.

Definition 3   The random variables {Yn,-<n<} are called to be stochastically dominated by a random variable Y, if for any x>0,

P ( | Y n | > x ) C P ( | Y | > x ) , - < n < ,

where the constant C>0, and denote {Yn,-<n<}Y.

In this paper,I(A) denotes the indicator function of an event A, log n=lnmax{x,e},X+=XI(X>0),g(n)=max{gU(n),gL(n)}. The symbol C represents a positive constant, which can take different values in different places, even in the same formula.

1 Some Lemmas and Main Results

Lemma 1   (Fang[2]) The sequence {Yn,-<n<} are m-WOD random variables, if the function {fn,-<n<} are non-decreasing(non-increasing), then {fn(Yn),-<n<} are also m-WOD random variables sequences with same dominating coefficients.

Lemma 2   (Fang[2]) The sequence {Yn,-<n<} are m-WOD random variables with dominating coefficients g(n). For every j1, the EYj=0 and E|Yj|p<. Then, there exist positive constants C1=C1(p,m),C2=C2(p,m),depending only on p and m, such that

E ( | i = 1 n Y i | p ) [ C 1 ( p , m ) + C 2 ( p , m ) g ( n ) ] i = 1 n E | Y i | p , 1 < p 2 ; E ( | i = 1 n Y i | p ) C 1 ( p , m ) i = 1 n E | Y i | p + C 2 ( p , m ) g ( n ) ( i = 1 n E Y i 2 ) p 2 , p > 2 .

Lemma 3   (Fang[2]) The sequence {Yn,-<n<} are m-WOD random variables with dominating coefficients g(n). For every j1, the EYj=0 and E|Yj|p<. Then, there exist positive constants C1=C1(p,m),C2=C2(p,m), depending only on p and m, such that

E ( | m a x 1 k n i = 1 k Y i | p ) [ C 1 ( p , m ) + C 2 ( p , m ) g ( n ) ] l o g p n i = 1 n E | Y i | p , 1 < p 2 ;

E ( m a x 1 k n | i = 1 k Y i | p ) C 1 ( p , m ) l o g p n i = 1 n E | Y i | p + C 2 ( p , m ) g ( n ) l o g p n ( i = 1 n E Y i 2 ) p 2 , p > 2 .

Lemma 4   (Wu[15]) Constant a>0,b>0, {Yn,-<n<}Y, then there exist positive constants C1,C2 such that following inequalities are established:

E | Y n | a I ( | Y n | b ) C [ E | Y | a I ( | Y | b ) + b a I ( | Y | > b ) ] , E | Y n | a I ( | Y n | > b ) C E | Y | a I ( | Y | > b ) .

Lemma 5   (Wu[16]) Let {Xn,n1} and {Yn,n1} be a sequence of random variable, for any q>r>0,ε>0,a>0, then

E ( | i = 1 n ( X i + Y i ) | - ε a ) + r C r ( 1 ε q + r q - r r q - r ) 1 a q - r E ( | i = 1 n X i | q ) + C r E ( | i = 1 n Y i | r ) ,

E ( m a x 1 k n | i = 1 k ( X i + Y i ) | - ε a ) + r C r ( 1 ε q + r q - r ) 1 a q - r E ( m a x 1 k n | i = 1 k X i | q ) + C r E ( m a x 1 k n | i = 1 k Y i | r ) .

where Cr=1 if 0<r1 or Cr=2r-1 if r>1.

Now, we present the main results, the proofs for them will be postponed in next section.

Theorem 1   Let γ>0,α>1/2,αp>1,{Xn,n1} be a moving average process under the sequence {Yn,-<n<} of m-WOD random variables with dominating coefficients g(n), {Yn,-<n<}Y, E|Y|< and EYj=0 for every j. The real number {an,-<n<} satisfies i=-|ai|<. Then g(n)=o(nδ) for some δ0, and δ<(γ/2-1)(αp-1) for γ>2. If

{ E | Y | p + δ / α < ,                         i f    p > γ , E | Y | p + δ / α l o g ( 1 + | Y | ) < ,    i f    p = γ , E | Y | γ + δ / α < ,                         i f    p < γ ,

then

n = 1 n α p - α γ - 2 E { m a x 1 k n | j = 1 k X j | - ε n α } + γ < , ε > 0 . (4)

and

n = 1 n α p - 2 P ( m a x 1 k n | j = 1 k X j | > ε n α ) < , ε > 0 . (5)

If αp=1, we have the following result:

Theorem 2   Let γ>0,α>1/2,{Xn,n1} be a moving average process under the sequence {Yn,-<n<} of m-WOD random variables with dominating coefficients g(n), {Yn,-<n<}Y,E|Y|< and EYj=0 for every j. The real number {an,-<n<} satisfies i=-|ai|<. Then g(n)=o(nδ) for some δ0, and δ<γ(α-1/2) for γ>2. If

{ E | Y | ( 1 + δ ) / α < ,                         i f    1 / α > γ , E | Y | ( 1 + δ ) / α l o g ( 1 + | Y | ) < ,    i f    1 / α = γ , E | Y | γ ( 1 + δ ) < ,                          i f    1 / α < γ ,

then

n = 1 n - α γ - 1 E { m a x 1 k n | j = 1 k X j | - ε n α } + γ < , ε > 0 , (6)

and

n = 1 n - 1 P ( m a x 1 k n | j = 1 k X j | > ε n α ) < , ε > 0 . (7)

Remark 1   Theorem 1 and 2 obtain complete γ-order moment convergence and complete convergence of the maximum partial sums for the moving average process {Xn,n1}, so the results in the paper extend and improve the results in Guan et al[14] and Song et al[17].

Remark 2   We known the m-WOD random variables include WOD, m-NA, m-NOD, m-END random variables, and so on, so the results also hold for WOD, m-NA, m-NOD, m-END random variables. The {Yn,-<n<}Y is weaker than the condition of identical distribution for {Yn,-<n<}, therefore Theorem 1 and 2 improve the known results.

2 Proof of Theorems

Proof of Theorem 1   By E|Y|<,i=-|ai|<, we get

E | X n | i = - E | a i Y n + i | C E | Y | i = - | a i | < , n 1 ,

therefore Xn exist. Set 1αp<q<1, for 1jn,n1, let

Y j ( n , 1 ) = - n α q I ( Y j < - n α q ) + Y j I ( | Y j | n α q ) + n α q I ( Y j > n α q ) , Y j ( n , 2 ) = ( Y j - n α q ) I ( n α q < Y j n α q + n α ) + n α I ( Y j > n α q + n α ) , Y j ( n , 3 ) = ( Y j + n α q ) I ( - n α q - n α < Y j - n α q ) - n α I ( Y j < - n α q - n α ) , Y j ( n , 4 ) = ( Y j - n α q - n α ) I ( Y j > n α q + n α ) , Y j ( n , 5 ) = ( Y j + n α q + n α ) I ( Y j < - n α q - n α ) .

Then

j = 1 n X j = j = 1 n i = - a i Y j + i = i = - a i j = i + 1 i + n l = 1 5 Y j ( n , l ) .

From Lemma 4 and E|Yj(n,2)|E|Yj|I(|Yj|>nαq), we have

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j ( n , 2 ) | n - α i = - | a i | j = i + 1 i + n E | Y j ( n , 2 ) | n - α i = - | a i | j = i + 1 i + n E | Y j | I ( | Y j | > n α q ) C n 1 - α E | Y | I ( | Y | > n α q ) . (8)

If α>1, we get

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j ( n , 2 ) | 0 , n .

If α1, for 1αp<q<1,αp>1, we get (1-αpq)-α(1-q)<0,E|Y|p<, we have

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j ( n , 2 ) | C n 1 - α E | Y | I ( | Y | > n α q ) C n ( 1 - α p q ) - α ( 1 - q ) E | Y | p 0 , n .

Similar to the above proof process ,we can obtain

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j ( n , 4 ) | n - α i = - | a i | j = i + 1 i + n E | Y j | I ( | Y j | > n α q + n α ) C n 1 - α E | Y | I ( | Y | > n α q ) 0 , n . (9)

Similarly, we get

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j ( n , 3 ) | 0 , n . (10)

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j ( n , 5 ) | 0 , n . (11)

Noting that EYj=0, it follows from Lemma 5, Cr inequality and (8)-(11), for v>γ1,

n = 1 n α p - α γ - 2 E { m a x 1 k n | j = 1 k X j | - ε n α } + γ = n = 1 n α p - α γ - 2 E { m a x 1 k n | i = - a i j = i + 1 i + k l = 1 5 ( Y j ( n , l ) - E Y j ( n , l ) ) | - ε n α } + γ n = 1 n α p - α γ - 2 E { l = 1 5 m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ( n , l ) - E Y j ( n , l ) ) | - ε n α } + γ

n = 1 n α p - α γ - 2 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | + l = 2 5 i = - | a i | | j = i + 1 i + n Y j ( n , l ) | - 3 4 ε n α } + γ n = 1 n α p - α γ - 2 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | + l = 2 5 i = - | a i | | j = i + 1 i + n ( Y j ( n , l ) - E Y j ( n , l ) ) | - 1 2 ε n α } + γ C n = 1 n α p - α v - 2 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | } v + C l = 2 3 n = 1 n α p - α v - 2 E { i = - | a i | | j = i + 1 i + n ( Y j ( n , l ) - E Y j ( n , l ) ) | } v + C l = 4 5 n = 1 n α p - α γ - 2 E { i = - | a i | | j = i + 1 i + n ( Y j ( n , l ) - E Y j ( n , l ) ) | } γ = : I + 1 I + 2 I + 3 I + 4 I 5 . (12)

For v>γ,0<γ<1,we have

n = 1 n α p - α γ - 2 E { m a x 1 k n | j = 1 k X j | - ε n α } + γ = n = 1 n α p - α γ - 2 E { m a x 1 k n | i = - a i j = i + 1 i + k l = 1 5 ( Y j ( n , l ) - E Y j ( n , l ) ) | - ε n α } + γ n = 1 n α p - α γ - 2 E { l = 1 5 m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ( n , l ) - E Y j ( n , l ) ) | - ε n α } + γ n = 1 n α p - α γ - 2 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | + l = 2 5 i = - | a i | | j = i + 1 i + n Y j ( n , l ) | - 3 4 ε n α } + γ C n = 1 n α p - α v - 2 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | } v + C n = 1 n α p - α v - 2 E { i = - | a i | j = i + 1 i + n ( Y j ( n , l ) - E Y j ( n , l ) ) | } v + C l = 4 5 n = 1 n α p - α γ - 2 E { i = - | a i | | j = i + 1 i + n Y j ( n , l ) | } γ = : I + 1 I + 2 I + 3 I + 4 I 5 . (13)

In order to prove (6) of Theorem 1, we need to prove Ii<,i=1,2,,5.

For I,1by Lemma 5, Markov and Ho¨lder inequalities, we have that for any v>max{2,γ,p},

I 1 = C n = 1 n α p - α v - 2 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | } v C n = 1 n α p - α v - 2 E { i = - | a i | m a x 1 k n | j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | } v C n = 1 n α p - α v - 2 E { i = - | a i | 1 - 1 / v ( | a i | 1 / v m a x 1 k n | j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | } v C n = 1 n α p - α v - 2 ( i = - | a i | ) v - 1 ( i = - | a i | E m a x 1 k n | j = i + 1 i + k ( Y j ( n , 1 ) - E Y j ( n , 1 ) ) | v ) C n = 1 n α p - α v - 2 i = - | a i | l o g v n { j = i + 1 i + n E | Y j ( n , 1 ) | v + g ( n ) ( j = i + 1 i + n E | Y j ( n , 1 ) | 2 ) v / 2 } C n = 1 n α p - α v - 2 l o g v n i = - | a i | { j = i + 1 i + n [ E | Y j | v I ( | Y j | n α q ) + n v α q I ( | Y j | > n α q ) ] }     + C n = 1 n α p - α v - 2 g ( n ) l o g v n i = - | a i | { j = i + 1 i + n [ E | Y j | 2 I ( | Y j | n α q ) + n 2 α q I ( | Y j | > n α q ) ] } v / 2 C n = 1 n α p - α v - 1 l o g v n [ E | Y | v I ( | Y | n α q ) + n v α q I ( | Y | > n α q ) ] + C n = 1 n α p - α v - 2 + v / 2 g ( n ) l o g v n [ E | Y | 2 I ( | Y | n α q ) + n 2 α q I ( | Y | > n α q ) ] v / 2 = : I 11 + I 12 . (14)

Noting v>p,0<q<1,α>1/2, we have

I 11 C n = 1 n α p - α v - 1 l o g v n [ E | Y | p n α q ( v - p ) I ( | Y | n α q ) + E | Y | p n α q ( v - p ) I ( | Y | > n α q ) ] C n = 1 n - α ( 1 - q ) ( v - p ) - 1 l o g v n E | Y | p < . (15)

If max{γ,p}2, we get E|Y|2<, for any v>max{2,γ,p,2(αp-1+δ)/(α-1/2)},

I 12 C n = 1 n α p - α v - 2 + v / 2 + δ l o g v n ( E | Y | 2 ) v / 2 < . (16)

If max{γ,p}<2, we get E|Y|p<, for any v>max{2,γ,p,2(αp-1+δ)/[2α(1-q)+(aqp-1)], then

I 12 C n = 1 n α p - α v - 2 + v / 2 + δ l o g v n [ E | Y | p n α q ( 2 - p ) I ( | Y | n α q ) + E | Y | p n α q ( 2 - p ) I ( | Y | > n α q ) ] v / 2 C n = 1 n α p - 2 - v 2 [ 2 α ( 1 - q ) + ( a q p - 1 ) ] + δ l o g v n ( E | Y | p ) v / 2 < . (17)

By (14)-(17), we obtain I1<.

For I2, for any v>max{2,γ,p}, we have

I 2 = C n = 1 n α p - α v - 2 E { i = - | a i | | j = i + 1 i + n ( Y j ( n , l ) - E Y j ( n , l ) ) | } v C n = 1 n α p - α v - 2 i = - | a i | E | j = i + 1 i + n ( Y j ( n , l ) - E Y j ( n , l ) ) | v C n = 1 n α p - α v - 2 i = - | a i | { j = i + 1 i + n E | Y j ( n , 2 ) | v + g ( n ) ( j = i + 1 i + n E | Y j ( n , 2 ) | 2 ) v / 2 } C n = 1 n α p - α v - 2 i = - | a i | { j = i + 1 i + n [ E | Y j | v I ( | Y j | 2 n α ) + n α v I ( | Y j | > n α ) ] }     + C n = 1 n α p - α v - 2 g ( n ) i = - | a i | { j = i + 1 i + n [ E | Y j | 2 I ( | Y j | 2 n α ) + n 2 α I ( | Y j | > n α ) ] } v / 2 C n = 1 n α p - α v - 1 [ E | Y | v I ( | Y | 2 n α ) + n α v I ( | Y | > n α ) ] + C n = 1 n α p - α v - 2 + v / 2 g ( n ) [ E | Y | 2 I ( | Y | 2 n α ) + n 2 α I ( | Y | > n α ) ] v / 2 = : I 21 + I 22 . (18)

For I21, we obtain

I 21 = C n = 1 n α p - α v - 1 k = 1 n E | Y | v I ( 2 ( k - 1 ) α < | Y | 2 k α ) + C n = 1 n α p - 1 P ( | Y | > n α ) C k = 1 E | Y | v I ( 2 ( k - 1 ) α < | Y | 2 k α ) n = k n α p - α v - 1 + C n = 1 n α p - 1 n = k P ( k α < | Y | ( k + 1 ) α ) C k = 1 k α p - α v E | Y | v I ( 2 ( k - 1 ) α < | Y | 2 k α ) + C k = 1 k α p P ( k α < | Y | ( k + 1 ) α ) C E | Y | p < . (19)

For I22, we obtain

I 22 C n = 1 n α p - α v - 2 + v / 2 + δ [ E | Y | 2 I ( | Y | 2 n α ) + n 2 α I ( | Y | > n α ) ] v / 2

If max{γ,p}2, we get E|Y|2<, for any v>max{2,γ,p,(αp-1+δ)/(α-1/2)},

I 22 C n = 1 n α p - α v - 2 + v / 2 + δ ( E | Y | 2 ) v / 2 < . (20)

If max{γ,p}<2, we get E|Y|p<, for any v>max{γ,p,2+2δ/(αp-1)}, then

I 22 C n = 1 n α p - α v - 2 + v / 2 + δ [ E | Y | p n α ( 2 - p ) I ( | Y | n α q ) + E | Y | p n α ( 2 - p ) I ( | Y | > n α q ) ] v / 2 C n = 1 n α p - 2 - v 2 ( a p - 1 ) ] + δ ( E | Y | p ) v / 2 < . (21)

By (18)-(21), we obtain I2<.

The proof of I4< will mainly be conducted under the following three cases.

Case 1 0 < γ 1 , by (13), Cr inequality and Lemma 4, we have

I 4 n = 1 n α p - α γ - 1 E | Y | γ I ( Y > n α ) C k = 1 E | Y | γ I ( k α < Y ( k + 1 ) α ) n = 1 k n α p - α γ - 1 { C k = 1 k α p - α γ E | Y | γ I ( k α < Y ( k + 1 ) α ) ,           i f   p > γ C k = 1 l o g ( 1 + k ) E | Y | p I ( k α < Y ( k + 1 ) α ) ,   i f   p = γ C k = 1 E | Y | γ I ( k α < Y ( k + 1 ) α ) ,                     i f   p < γ { C k = 1 E | Y | p < ,                       i f   p > γ , C k = 1 l o g ( 1 + | Y | ) E | Y | p < ,   i f   p = γ , C k = 1 E | Y | γ <   ,                      i f   p < γ . (22)

Case 2 1 < γ 2 , similar to (14), we get

I 4 C n = 1 n α p - α γ - 2 E { i = - | a i | 1 - 1 / γ ( | a i | 1 / γ j = i + 1 i + n ( Y j ( n , 4 ) - E Y j ( n , 4 ) ) | } γ C n = 1 n α p - α γ - 2 i = - | a i | E | j = i + 1 i + n ( Y j ( n , 4 ) - E Y j ( n , 4 ) ) | γ C n = 1 n α p - α γ - 2 ( 1 + g ( n ) ) i = - | a i | j = i + 1 i + n E | Y j ( n , 4 ) | γ C n = 1 n α p - α γ - 1 + δ E | Y | γ I ( | Y | > n α ) C n = 1 n α p - α γ - 1 + δ k = n E | Y | γ I ( k α < | Y | ( k + 1 ) α ) C k = 1 k δ E | Y | γ I ( k α < | Y | ( k + 1 ) α ) n = 1 k n α p - α γ - 1 { C k = 1 k α p - α γ + δ E | Y | γ I ( k α < Y ( k + 1 ) α ) ,            i f   p > γ C k = 1 k δ l o g ( 1 + k ) E | Y | p I ( k α < Y ( k + 1 ) α ) ,   i f   p = γ C k = 1 k δ E | Y | γ I ( k α < Y ( k + 1 ) α ) ,                      i f   p < γ { C k = 1 E | Y | p + δ / α < ,                        i f   p > γ , C k = 1 E | Y | p + δ / α l o g ( 1 + | Y | ) < ,   i f   p = γ , C k = 1 E | Y | γ + δ / α < ,                        i f   p < γ . (23)

Case 3 γ > 2 , we get

I 4 C n = 1 n α p - α γ - 2 i = - | a i | [ j = i + 1 i + n E | Y j ( n , 4 ) | γ + g ( n ) ( j = i + 1 i + n E | Y j ( n , 4 ) | 2 ) γ / 2 ] = : I 41 + I 42 .

From (23), we get

I 41 = C n = 1 n α p - α γ - 2 i = - | a i | j = i + 1 i + n E | Y j ( n , 4 ) | γ < . (24)

Since γ>2,E|X|max{γ,p}<, and δ<(γ/2-1)(αp-1), we get

I 42 C n = 1 n α p - α γ - 2 + δ + v 2 [ E | Y | 2 I ( | Y | > n α ) ] γ / 2 C n = 1 n α p - α γ - 2 + δ + v 2 + v α 2 ( 2 - m a x { γ , p } ) [ E | Y | m a x { γ , p } I ( | Y | > n α ) ] γ / 2 C n = 1 n α p - α γ - 2 + δ + v 2 + v α 2 ( 2 - p ) = C n = 1 n - ( α p - 1 ) ( v 2 - 1 ) - 1 + δ < . (25)

Then I4<.

Similar to the proof of I2<,I4<,we can get I3< and I5<, too.

Noting

> n = 1 n α p - α γ - 2 E { m a x 1 k n | j = 1 k X j | - ε n α } + γ n = 1 n α p - α γ - 2 0 ε α n α γ P ( m a x 1 k n | j = 1 k X j | - ε n α > t 1 γ ) d t ε α n = 1 n α p - 2 P ( m a x 1 k n | j = 1 k X j | > 2 ε n α ) (26)

The proof of Theorem 1 is completed.

Proof of Theorem 2   For n1,1jn, let

Y j ' = - n α I ( Y j < - n α ) + Y j I ( | Y j | n α ) + n α I ( Y j > n α ) , Y j = Y j - Y j ' = Y j - n α I ( Y j > n α ) + Y j + n α I ( Y j < - n α ) .

By Lemma 4 and E|Yj|E|Yj|I(|Yj|>nα), we have

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j | n - α i = - | a i | j = i + 1 i + n E | Y j | I ( | Y j | > n α ) C n 1 - α E | Y | I ( | Y | > n α ) . (27)

If α>1, we get

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j   | 0 , n .

If α1, then 1α(1+δ)>1,E|Y|1α(1+δ)<, we get

n - α m a x 1 k n | E i = - a i j = i + 1 i + k Y j | C n - δ E | Y | 1 α ( 1 + δ ) 0 , n .

Noting the EYi=0, it follows from Lemma 5 and Cr inequality that for v>γ1,

n = 1 n - α γ - 1 E { m a x 1 k n | j = 1 k X j | - ε n α } + γ n = 1 n - α γ - 1 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ' - E Y j ' ) | + m a x 1 k n | i = - a i j = i + 1 i + k ( Y j - E Y j ) | - ε n α } + γ n = 1 n - α γ - 1 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ' - E Y j ' ) | + i = - | a i | | j = i + 1 i + n Y j | - 3 4 ε n α } + γ n = 1 n - α γ - 1 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ' - E Y j ' ) | + i = - | a i | | j = i + 1 i + n ( Y j - E Y j ) | - 1 2 ε n α } + γ C n = 1 n - α v - 1 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ' - E Y j ' ) | } v + C n = 1 n - α γ - 1 E { i = - | a i | | j = i + 1 i + n ( Y j - E Y j ) | } γ = : J 1 + J 2 . (28)

For v>γ,0<γ<1, we have

n = 1 n - α γ - 1 E { m a x 1 k n | j = 1 k X j | - ε n α } + γ n = 1 n - α γ - 1 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ' - E Y j ' ) | + i = - | a i | | j = i + 1 i + n Y j   | - 3 4 ε n α } + γ C n = 1 n - α v - 1 E { m a x 1 k n | i = - a i j = i + 1 i + k ( Y j ' - E Y j ' ) | } v + C n = 1 n - α γ - 1 E { i = - | a i | | j = i + 1 i + n Y j   | } γ = : J 1 + J 2 . (29)

In order to prove Theorem 2, we need to prove Ji<,i=1,2.

For J1, similar to I1, we have that for any v>max{2,γ(1+δ),1α(1+δ)},

J 1 C n = 1 n - α v - 1 i = - | a i | E m a x 1 k n | j = i + 1 i + k ( Y j ' - E Y j ' ) | v C n = 1 n - α v - 1 i = - | a i | l o g v n { j = i + 1 i + k E | Y j ' | v + g ( n ) ( j = i + 1 i + k E | Y j ' | 2 ) v / 2 } C n = 1 n - α v l o g v n [ E | Y | v I ( | Y | n α ) + n v α P ( | Y | > n α ) ] + n = 1 n - α v - 1 + v 2 g ( n ) l o g v n [ E | Y | 2 I ( | Y | n α ) + n 2 α P ( | Y | > n α ) ] v / 2 = : J 11 + J 12 . (30)

For J11, by E|Y|max{γ(1+δ),1α(1+δ)}<, we get

J 11 C n = 1 n - α v l o g v n [ E | Y | v I ( | Y | n α ) + n v α P ( | Y | > n α ) ] C n = 1 n - α m a x { γ ( 1 + δ ) , 1 α ( 1 + δ ) } l o g v n E | Y | m a x { γ ( 1 + δ ) , 1 α ( 1 + δ ) } C n = 1 n - ( 1 + δ ) l o g v n E | Y | m a x { γ ( 1 + δ ) , 1 α ( 1 + δ ) } < . (31)

For J12, if max{γ(1+δ),1α(1+δ)}2, then E|Y|2<, taking v>max{2,γ(1+δ),1α(1+δ),2δ2α-1}, we have

J 12 C n = 1 n - α v - 1 + v 2 + δ l o g v n ( E | Y | 2 ) v 2 < . (32)

If max{γ(1+δ),1α(1+δ)}<2,E|Y|max{γ(1+δ),1α(1+δ)}<, we get

J 12 C n = 1 n - α v - 1 + v 2 + δ + v 2 ( 2 α - α m a x { γ ( 1 + δ ) , 1 α ( 1 + δ ) } ) l o g v n ( E | Y | m a x { γ ( 1 + δ ) , 1 α ( 1 + δ ) } ) v 2 C n = 1 n - 1 - ( v 2 - 1 ) < . (33)

Then, it follows from (30)-(33) that J1<.

The proof of J2< will be conducted under the following three cases.

Case 1 0 < γ < 1 , similar to I4, we have

J 2 = C n = 1 n - α γ - 1 i = - | a i | j = i + 1 i + n E | Y j | γ C n = 1 n - α γ E | Y | γ ( Y > n α ) C n = 1 n - α γ k = n E | Y | γ ( k α < Y ( k + 1 ) α ) C k = 1 E | Y | γ ( k α < Y ( k + 1 ) α ) n = 1 k n - α γ { C k = 1 n 1 - α γ E | Y | γ ( k α < Y ( k + 1 ) α ) ,            i f   1 α > γ C k = 1 l o g ( 1 + k ) E | Y | 1 α ( k α < Y ( k + 1 ) α ) ,   i f   1 α = γ C k = 1 E | Y | γ ( k α < Y ( k + 1 ) α ) ,                    i f   1 α > γ { C E | Y | 1 α < ,                       i f   1 α > γ , C E | Y | 1 α l o g ( 1 + | Y | ) < ,   i f   1 α = γ , C k = 1 E | Y | γ < ,                 i f   1 α > γ . (34)

Case 2 1 γ < 2 , we have

J 2 = C n = 1 n - α γ - 1 ( 1 + g ( n ) ) i = - | a i | j = i + 1 i + n E | Y j | γ C n = 1 n - α γ + δ E | Y | γ ( Y > n α ) C k = 1 E | Y | γ ( k α < Y ( k + 1 ) α ) n = 1 k n - α γ + δ { C k = 1 n 1 - α γ + δ E | Y | γ ( k α < Y ( k + 1 ) α ) ,              i f   1 α > γ C k = 1 k δ l o g ( 1 + k ) E | Y | 1 α ( k α < Y ( k + 1 ) α ) ,   i f   1 α = γ C k = 1 E k δ | Y | γ ( k α < Y ( k + 1 ) α ) ,                      i f   1 α > γ { C E | Y | 1 α ( 1 + δ ) < ,                        i f   1 α > γ , C E | Y | 1 α ( 1 + δ ) l o g ( 1 + | Y | ) < ,   i f   1 α = γ , C k = 1 E | Y | γ ( 1 + δ ) < ,                  i f   1 α > γ . (35)

Case 3 γ > 2 , we get

J 2 C n = 1 n - α γ - 1 i = - | a i | j = i + 1 i + n [ E | Y j   | γ + g ( n ) ( j = i + 1 i + n E | Y j   | 2 ) v 2 ] = : J 21 + J 22 .

By (34), we obtain

J 21 = C n = 1 n - α γ - 1 i = - | a i | j = i + 1 i + n E | Y j   | γ < . (36)

Since γ>2,E|Y|2<,0δ<γ(α-12),we get

J 22 C n = 1 n - α γ - 1 + δ + v 2 [ E | Y | 2 I ( | Y | > n α ) ] v 2 < . (37)

Then, it follows from (34)-(37) that J2<. We also gain

n = 1 n - 1 P ( m a x 1 k n | j = 1 k X j | > ε n α ) < , ε > 0 .

The proof of Theorem 2 is completed.

References

  1. Wang K Y, Wang Y B, Gao Q W. Uniform asymptotic for the finite-time probability of a new dependent risk model with a constant interest rate[J]. Methodology and Computing in Applied Probability, 2013, 15: 109-124. [CrossRef] [MathSciNet] [Google Scholar]
  2. Fang H Y, Ding S S, Li X Q, et al. Asymptotic approximations of ratio moments based on dependent sequences[J]. Mathematics, 2020, 8(3): 361. [CrossRef] [MathSciNet] [Google Scholar]
  3. Ebrahimi N, Ghosh M. Multivariate negative dependence[J]. Communications in Statistics A, 1981, 10(4): 307-337. [CrossRef] [MathSciNet] [Google Scholar]
  4. Liu L. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9): 1290-1298. [CrossRef] [MathSciNet] [Google Scholar]
  5. Ibragimov I A. Some limit theorem for stationary processes[J]. Theory of Probability and Its Applications, 1962, 7: 349-382. [CrossRef] [Google Scholar]
  6. Burton R M, Dehling H. Large deviations for some weakly dependent random process[J]. Statistics and Probability Letters, 1990, 9: 397-401. [CrossRef] [MathSciNet] [Google Scholar]
  7. Li D L, Rao M B, Wang X C. Complete convergence of moving average process[J]. Statistics and Probability Letters, 1992, 14: 111-114. [CrossRef] [MathSciNet] [Google Scholar]
  8. Chen P Y, Wang D C. Convergence rates for probabilities of moderate deviations for moving average process[J]. Acta Math Sin (Eng Ser), 2008, 24(4): 611-622. [CrossRef] [Google Scholar]
  9. Li Y X, Li J G. Weak Convergence for partial sums of moving-average processes generated by stochastic process[J]. Acta Mathematica Sinica, 2004, 47(5): 873-884. [Google Scholar]
  10. Zhang L. Complete convergence of moving average processes under dependence assumptions[J]. Statistics and Probability Letters, 1996, 30: 165-170. [CrossRef] [MathSciNet] [Google Scholar]
  11. Chen P Y, Hu T C, Volodin A. Limiting behaviour of moving average processes under Formula -mixing assumption[J]. Statistics and Probability Letters, 2009, 75: 105-111. [CrossRef] [MathSciNet] [Google Scholar]
  12. Song M Z, Zhu Q X. Convergence properties of the maximum partial sums for moving average process under Formula -mixing assumption[J]. Journal of Inequalities and Applications, 2019: 90. DOI: https://doi.org/10.1186/s13660-019-2038-2. [Google Scholar]
  13. Tao X R, Wu Y, Xia H, et al. Complete convergence of moving average process based on widely orthant dependent random variables[J]. Revista de la Real Academia de Ciencias Exactas Fisicas Naturales, Serie A, Matematicas, 2017, 111(3): 809-821. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. Guan L H, Xiao Y S, Zhao Y A. Complete moment convergence of moving average processes for m-WOD sequence[J]. Journal of Inequalities and Applications, 2021: 16. DOI: https://doi.org/10.1186/s13660-021-02546-6. [Google Scholar]
  15. Wu Q Y. Probability Limit Theory for Mixing Sequences[M]. Beijing: Sicence Press of China, 2006(Ch). [Google Scholar]
  16. Wu Y, Wang X, Hu S. Complete moment convergence for weighted sums of weakly dependent random variables and its application in nonparametric regression model[J]. Statistics Probability Letters, 2017, 127(1): 56-66. [CrossRef] [MathSciNet] [Google Scholar]
  17. Song M Z, Wu Y F, Chu Y. Complete Formula -th-moment convergence of moving average process for m-WOD random variablel[J].Wuhan University Journal of Natural Sciences, 2022, 27(5): 396-404. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.