Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
Page(s) 396 - 404
DOI https://doi.org/10.1051/wujns/2022275396
Published online 11 November 2022

© Wuhan University 2022

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

In many statistical models, it is not reasonable to assume that random variables are independent, so it is very meaningful to extend the concept of independence to dependence cases. Scholars have given many types of dependent random variables, such as negatively associated (NA) random variables, negatively orthant dependent (NOD) random variables, and extend negatively dependent (END) random variables. One important dependence sequence of these dependence is widely orthant dependent (WOD) random variables, which was introduced by Wang et al[1] , as follows.

Definition 1   The random variables {Xn,n1} are said to be widely upper orthant dependent (WUOD) random variables, if there exists a finite sequence of real numbers {gU(n),n1} such that for each n1, x1,x2, ,xnR,

P ( X 1 > x 1 , X 2 > x 2 , , X n > x n ) g U ( n ) i = 1 n P ( X i > x i ) (1)

The random variables {Xn,n1} are said to be widely lower orthant dependent (WLOD, for short) random variables, if there exists a finite sequence of real numbers {gL(n),n1} such that for each x1,x2,,xnR,

P ( X 1 x 1 , X 2 x 2 , , X n x n ) g L ( n ) i = 1 n P ( X i x i ) (2)

The random variables {Xn,n1} are said to be WOD random variables, if the random variables {Xn,n1} are both WUOD and WLOD, g(n)=max{gU(n),gL(n)} are called dominated coefficients.

Inspired by m-NA and WOD, the concept of m-WOD random variables was introduced by Fang et al[2], as follows:

Definition 2   For fix integer m1, the random variables {Xn,n1} is called to be m-WOD if for any n2, i1,i2, ,inN+, such that |ik-ij|m for all 1kjn, we get the Xi1,Xi2, ,Xin are WOD random variables.

By (1) and (2), we have gU(n)1,gL(n)1. If gU(n)=gL(n)=1, then WOD random variables are NOD random variables, which were introduced by Ebrahimi and Ghosh[3]. When gU(n)=gL(n)=M1, then WOD random variables are END random variables, which were introduced by Liu[4]. Liu[4] pointed out that the END random variables are more comprehensive, which imply NA and positive random variables, so m-WOD random variables includes independent random variables, WOD, m-NA, m-NOD, m-END random variables and so on. Therefore, it is interesting to investigate the probability limit theory and its applications for m-WOD random variables.

Let {Yn,-<n<} be a random variable sequence and the real number sequence {an,-<n<} be absolute summable, i.e. i=-|ai|<. Then {Xn,n1} is said moving average process under the sequence {Yn,-<n<}, if

X n = i = - a i Y n + i ,     n   1 .

After the appearance of moving average process, a lot of conclusions on convergence properties have been obtained. When {Yn,-<n<} is identically distributed, many results about moving average process have been gained [5-8]. Recently, some results have been obtained under the assumption that the sequence {Yn,-<n<} is dependent. For example, Li[9] investigated the convergence properties under ρ-mixing assumptions; Zhang[10] and Chen et al[11] established complete convergence under φ-mixing assumptions; Song and Zhu[12] got the complete convergence of moving average process based on ρ--mixing assumptions; Tao[13] discussed the complete convergence under WOD random variables; Guan[14] obtained the complete moment convergence under m-WOD random variables.

There are few results on the complete qth-moment convergence of moving average process for m-WOD random variables. Therefore, in this paper, based on Guan's research[14], we study the complete qth-moment convergence of moving average processes based on m-WOD random variables, the results extend and improve the corresponding ones under WOD, m-NA, m-NOD, m-END random variables.

Definition 3   The random variables {Yn,-<n<} are called be stochastically dominated by a random variable Y, if for any x>0,P(|Yn|>x)CP(|Y|>x),-<n<, where the constant C>0, and denote {Yn,-<n<}Y.

In this paper, I(A) denotes the indicator function of an event A, the symbol C represents a positive constant, which can take different values in different places, even in the same formula.log n=lnmax{x,e},X+=XI(X>0),g(n)=max{gU(n),gL(n)}.

1 Some Lemmas and Main Results

Lemma 1[2]The sequence {Yn,-<n<} are m-WOD random variables, if the function sequences {fn,-<n<} are non-decreasing(non-increasing), then random variables {fn(Yn),-<n<} are also m-WOD random variables with same dominating coefficients.

Lemma 2[2] p 2 , the sequence {Yn,-<n<} are m-WOD random variables with dominating coefficients g(n). For every j1, the EYj=0 and E|Yj|p<.

Then, there exist positive constants C1=C1(p,m),C2=C2(p,m),depending only on p and m, such that

E ( | i = 1 n Y i | p ) C 1 ( p , m ) i = 1 n E | Y i | p + C 2 ( p , m ) g ( n ) ( i = 1 n E Y i 2 ) p / 2 .

Lemma 3[15]Let {Yn,-<n<}Y,a>0,b>0 are constant, then there exists positive constant C1,C2 such that following inequalities are established:

E | Y n | a I ( | Y n | b ) C [ E | Y | a I ( | Y | b ) + b a I ( | Y | > b ) ]

E | Y n | a I ( | Y n | > b ) C E | Y | a I ( | Y | > b )

Lemma 4 [14]Let r>1,1p<2,{Xn,n1} be a moving average process under the sequence {Yn,-<n<} of m-WOD random variables with dominating coefficients g(n), {Yn,-<n<}Y and EYj=0 for every j, the real number sequence {an,-<n<} is absolute summable. If E|Y|rp<,g(n)=o(nδ),δ0, then

n = 1 n r - 2 P ( | j = 1 n X j | ε n 1 / p ) < , ε > 0 .

Proof   If r>1,1p<2,obviously r=rp(1/p), and 1/p>1/2,rp>1,so Lemma 4 satisfies the conditions of the Theorem 3.1 in Ref. [14].

If r=1, we have the following results:

Lemma 5 [14]Let 1p<2,{Xn,n1} be a moving average process under the sequence {Yn,-<n<} of m-WOD random variables with dominating coefficients g(n),{Yn,-<n<}Y and EYj=0 for every j. Suppose i=-|ai|θ<, where θ(0,1) if p=1, and θ=1 if 1<p<2. If E|Y|p(1+δ)<,g(n)=o(nδ),0δ<(2-p)/p, then

n = 1 n - 1 P ( | j = 1 n X j | ε n 1 / p ) < , ε > 0 .

Now, we present the main results, the proofs for them will be postponed in next section.

Theorem 1   Let q>0,r>1,1p<2,{Xn,n1} be a moving average process under the sequence {Yn,-<n<} of m-WOD random variables with dominating coefficients g(n),{Yn,-<n<}Y and EYj=0 for every j, the real number sequence {an,-<n<} is absolute summable. Let g(n)=o(nδ),δ0, if

{ E | Y | r p < ,                       i f    q < r p , E | Y | r p l o g ( 1 + | Y | ) ,          i f    q = r p , E | Y | q < ,                         i f    q > r p ,

then

n = 1 n r - 2 - q / p E { | j = 1 n X j | - ε n 1 / p } + q < , ε > 0 (3)

If r=1, we have the following result:

Theorem 2   Let 0<q<2,1p<2,{Xn,n1} be a moving average process under the sequence {Yn,-<n<} of m-WOD random variables with dominating coefficients g(n),{Yn,-<n<}Y and EYj=0 for every j. Suppose i=-|ai|θ<, where θ(0,1) if p=1, and θ=1 if 1<p<2. Let g(n)=o(nδ),0δ<min{2/p-1, (2-q)/p}, if

{ E | Y | p ( 1 + δ ) < ,                      i f    q < p , E | Y | p ( 1 + δ ) l o g ( 1 + | Y | ) ,         i f    q = p , E | Y | q ( 1 + δ ) < ,                      i f    q > p ,

then

n = 1 n - 1 - q / p E { | j = 1 n X j | - ε n 1 / p } + q < , ε > 0 (4)

Remark 1   Theorems 1 and 2 obtain the complete qth-moment convergence of moving average processes {Xn,n1} under m-WOD random variables. We get the results without slowly varying function, so our results in the paper extend and improve the results in Ref.[14].

Remark 2   Noting, m-WOD random variables include WOD, m-NA, m-NOD, m-END random variables and so on, so our results also hold for WOD, m-NA, m-NOD, m-END random variables, therefore our Theorems 1 and 2 improve the known results.

Remark 3   We know that the condition {Yn,-<n<}Y is weaker than the condition of identical distribution for {Yn,-<n<}. Thus, our results still hold for identically distributed random variables.

2 Proof of Theorems

Proof of Theorem 1   By E|Y|<,i=-|ai|<, we get

E | X n | i = - E | a i Y n + i | C E | Y | i = - | a i | < ,        n 1 ,

Therefore Xn exists. Let x>nq/p, write

Y j ' = - x 1 / q I ( Y j < - x 1 / q ) + Y j I ( | Y j | x 1 / q ) + x 1 / q I ( Y j > x 1 / q ) , Y j = Y j - Y j ' = ( Y j - x 1 / q ) I ( Y j > x 1 / q ) + ( Y j + x 1 / q ) I ( Y j < - x 1 / q ) .

Note that

j = 1 n X j = j = 1 n i = - a i Y j + i = i = - a i j = i + 1 i + n Y j .

For r>1,rp>1,i=-|ai|<,EYj=0,|Yj ||Yj|I(|Yj|>x1/q),by Lemma 3, we have

  x - 1 / q | E i = - a i j = i + 1 i + n Y j ' | = x - 1 / q | E i = - a i j = i + 1 i + n Y j   | x - 1 / q i = - | a i | j = i + 1 i + n E | Y j | I ( | Y j | > x 1 / q ) C n x - 1 / q E | Y | I ( | Y | > x 1 / q )

C n x - r p / q E | Y |   r p I ( | Y | > x 1 / q )

C n 1 - r E | Y | r p I ( | Y | > x 1 / q ) 0 , a s    n

So, we have

x - 1 / q | E i = - a i j = i + 1 i + n Y j ' | < 1 / 4 (5)

For

     n = 1 n r - 2 - q / p E { | j = 1 n X j | - ε n 1 / p } + q = n = 1 n r - 2 - q / p 0 P ( | j = 1 n X j | > ε n 1 / p + x 1 / q ) d x n = 1 n r - 2 - q / p 0 n q / p P ( | j = 1 n X j | > ε n 1 / p ) d x + n = 1 n r - 2 - q / p n q / p P ( | j = 1 n X j | > x 1 / q ) d x = n = 1 n r - 2 P ( | j = 1 n X j | > ε n 1 / p ) + n = 1 n r - 2 - q / p n q / p P ( | j = 1 n X j | > x 1 / q ) d x = : I 1 + I 2

by Lemma 4, we obtain

I 1 = n = 1 n r - 2 P ( | j = 1 n X j | > ε n 1 / p ) < .

To prove (3) of Theorem 1, we only need to prove

I 2 = n = 1 n r - 2 - q / p n q / p P ( | j = 1 n X j | > x 1 / q ) d x < .

By (5), we get

I 2 C n = 1 n r - 2 - q / p n q / p P ( | i = - a i j = i + 1 i + n Y j ' ' | x 1 / q / 2 ) d x + C n = 1 n r - 2 - q / p n q / p P ( | i = - a i j = i + 1 i + n ( Y j ' - E Y j ' ) | x 1 / q / 4 ) d x       = : I 21 + I 22 .

For I21, by Markov inequality and Lemma 3, we get

                             I 21 C n = 1 n r - 2 - q / p n q / p x - 1 / q E | i = - a i j = i + 1 i + n Y j ' ' | d x C n = 1 n r - 2 - q / p n q / p x - 1 / q i = - | a i | j = i + 1 i + n E | Y j ' ' | d x C n = 1 n r - 2 - q / p n q / p x - 1 / q i = - | a i | j = i + 1 i + n E | Y j | I ( | Y j | > x 1 / q ) d x C n = 1 n r - 1 - q / p n q / p x - 1 / q E | Y | I ( | Y | > x 1 / q ) d x

= C n = 1 n r - 1 - q / p m = n m q / p ( m + 1 ) q / p x - 1 / q E | Y | I ( | Y | > x 1 / q ) d x C n = 1 n r - 1 - q / p m = n m q / p - 1 / p - 1 E | Y | I ( | Y | > m 1 / p ) = C m = 1 m q / p - 1 / p - 1 E | Y | I ( | Y | > m 1 / p ) n = 1 m n r - 1 - q / p { C m = 1 m r - 1 / p - 1 E | Y | I ( | Y | > m 1 / p ) ,                           i f   q < r p C m = 1 m r - 1 / p - 1 l o g ( m + 1 ) E | Y | I ( | Y | > m 1 / p ) ,        i f   q = r p C m = 1 m q / p - 1 / p - 1 E | Y | I ( | Y | > m 1 / p ) ,                          i f   q > r p = { C m = 1 m r - 1 / p - 1 k = m E | Y | I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,                            i f    q < r p C m = 1 m r - 1 / p - 1 l o g ( m + 1 ) k = m E | Y | I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,        i f    q = r p C m = 1 m q / p - 1 / p - 1 k = m E | Y | I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,                           i f    q > r p { C k = 1 k r - 1 / p E | Y | I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,                        i f    q < r p C k = 1 k r - 1 / p l o g ( k + 1 ) E | Y | I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,      i f    q = r p C k = 1 k q / p - 1 / p E | Y | I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,                      i f    q > r p

{ C E | Y | r p < ,                          i f    q < r p C E | Y | r p l o g ( | Y | + 1 ) < ,      i f    q = r p C E | Y | q < ,                            i f    q > r p (6)

For I22, by Lemmas 1-3, Markov and Ho¨lderinequalities, we have that for any v2,

I 22 C n = 1 n r - 2 - q / p n q / p x - v / q E { | i = - a i j = i + 1 i + n ( Y j ' - E Y j ' ) | v } d x C n = 1 n r - 2 - q / p n q / p x - v / q E { i = - | a i | | j = i + 1 i + n ( Y j ' - E Y j ' ) | } v d x = C n = 1 n r - 2 - q / p n q / p x - v / q E { i = - | a i | 1 - 1 / v ( | a i | 1 / v | j = i + 1 i + n ( Y j ' - E Y j ' ) | ) } v d x C n = 1 n r - 2 - q / p n q / p x - v / q ( i = - | a i | ) v - 1 { i = - | a i | E ( | j = i + 1 i + n ( Y j ' - E Y j ' ) | v ) } d x C n = 1 n r - 2 - q / p n q / p x - v / q i = - | a i | { j = i + 1 i + n E | Y ' | v + g ( n ) ( j = i + 1 i + n E | Y ' | 2 ) v / 2 } d x C n = 1 n r - 2 - q / p n q / p x - v / q i = - | a i | { j = i + 1 i + n [ E | Y j | v I ( | Y j | x 1 / q ) + x v / q P ( | Y j | > x 1 / q ) ] } d x

+ C n = 1 n r - 2 - q / p + δ n q / p x - v / q i = - | a i | { j = i + 1 i + n [ E | Y j | 2 I ( | Y j | x 1 / q ) + x 2 / q P ( | Y j | > x 1 / q ) ] } v / 2 d x C n = 1 n r - 1 - q / p n q / p x - v / q [ E | Y | v I ( | Y | x 1 / q ) + x v / q P ( | Y | > x 1 / q ) ] d x + C n = 1 n r - 2 - q / p + v / 2 + δ n q / p x - v / q [ E | Y | 2 I ( | Y | x 1 / q ) + x 2 / q P ( | Y | > x 1 / q ) ] v / 2 d x = : I 221 + I 222 .

For I221 , taking v>max{2,q,rp}, we have

I 221 = C n = 1 n r - 1 - q / p m = n m q / p ( m + 1 ) q / p [ x - v / q E | Y | v I ( | Y | x 1 / q ) + P ( | Y | > x 1 / q ) ] d x C n = 1 n r - 1 - q / p m = n [ m q / p - v / p - 1 E | Y | v I ( | Y | ( m + 1 ) 1 / p ) + m q / p - 1 P ( | Y | > m 1 / q ) ] C m = 1 [ m q / p - v / p - 1 E | Y | v I ( | Y | ( m + 1 ) 1 / p ) + m q / p - 1 P ( | Y | > m 1 / q ) ] n = 1 m n r - 1 - q / p { C m = 1 [ m r - v / p - 1 E | Y | v I ( | Y | ( m + 1 ) 1 / p ) + m r - 1 P ( | Y | > m 1 / q ) ] ,                           i f    q < r p C m = 1 [ m r - v / p - 1 E | Y | v I ( | Y | ( m + 1 ) 1 / p ) + m r - 1 P ( | Y | > m 1 / q ) ] l o g ( m + 1 ) ,        i f    q = r p C m = 1 [ m q / p - v / p - 1 E | Y | v I ( | Y | ( m + 1 ) 1 / p ) + m q / p - 1 P ( | Y | > m 1 / q ) ] ,                       i f    q > r p { C k = 1 k r - v / p E | Y | v I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) + C E | Y | r p ,                                           i f    q < r p C k = 1 k r - v / p l o g ( k + 1 ) E | Y | v I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) + C E | Y | r p l o g ( | Y | + 1 ) ,    i f    q = r p C k = 1 k q / p - v / q E | Y | v I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) + C E | Y | q ,                                          i f    q > r p

{ C E | Y | r p < ,                                                                                                           i f    q < r p C E | Y | r p l o g ( | Y | + 1 ) < ,                                                                                      i f    q = r p C E | Y | q < ,                                                                                                            i f    q > r p   (7)

For I222, taking v>max{2,2q/p}, we obtain

I 222 C n = 1 n r - 2 - q / p + v / 2 + δ n q / p x - v / q { [ E | Y | 2 I ( | Y | x 1 / q ) ] v / 2 + x v / q P v / 2 ( | Y | > x 1 / q ) } d x = C n = 1 n r - 2 - q / p + v / 2 + δ m = n m q / p ( m + 1 ) q / p { x - v / q [ E | Y | 2 I ( | Y | x 1 / q ) ] v / 2 + P v / 2 ( | Y | > x 1 / q ) } d x C n = 1 n r - 2 - q / p + v / 2 + δ m = n [ m q / p - v / p - 1 ( E | Y | 2 I ( | Y | ( m + 1 ) 1 / p ) v / 2 + m q / p - 1 P v / 2 ( | Y | > m 1 / p ) ] C m = 1 [ m q / p - v / p - 1 ( E | Y | 2 I ( | Y | ( m + 1 ) 1 / p ) v / 2 + m q / p - 1 P v / 2 ( | Y | > m 1 / p ) ] n = 1 m n r - 2 - q / p + v / 2 + δ C m = 1 [ m r - 2 - v / p + v / 2 + δ ( E | Y | 2 I ( | Y | ( m + 1 ) 1 / p ) v / 2 + m r - 2 + v / 2 + δ P v / 2 ( | Y | > m 1 / p ) ]

If rp<2, taking v>max{2q/p,2+2δ/(r-1)},so r-2+v/2-rv/2+δ<-1, then

I 222 C m = 1 m r - 2 + v / 2 - r v / 2 + δ [ ( E | Y | r p I ( | Y | ( m + 1 ) 1 / p ) v / 2 + ( E | Y | r p ( | Y | > m 1 / p ) ) v / 2 ]

C m = 1 m r - 2 + v / 2 - r v / 2 + δ ( E | Y | r p ) v / 2 < (8)

If rp2, we get E|Y|2<, taking v>max{2,2q/p,(r-1+δ)2p/(2-p)}, then r-2+v/2-v/p+δ<-1, and

I 222 C m = 1 [ m r - 2 - v / p + v / 2 + δ [ ( E | Y | 2 I ( | Y | ( m + 1 ) 1 / p ) v / 2 + ( E | Y | 2 ( | Y | > m 1 / p ) ) v / 2 ]

C m = 1 m r - 2 - v / p + v / 2 + δ ( E | Y | 2 ) v / 2 <   (9)

By (5)-(9), the proof of Theorem 1 is completed.

Next, we prove Theorem 2.

Proof of Theorem 2   From the proof of Theorem 1, we get

n = 1 n - 1 - q / p E { | j = 1 n X j | - ε n 1 / p } + q n = 1 n - 1 P ( | j = 1 n X j | > ε n 1 / p ) + n = 1 n - 1 - q / p n q / p P ( | j = 1 n X j | > x 1 / q ) d x = : J 1 + J 2 .

By Lemma 5, we get

J 1 = n = 1 n - 1 P ( | j = 1 n X j | > ε n 1 / p ) < .

In order to prove (4), we need to prove

J 2 = n = 1 n - 1 - q / p n q / p P ( | j = 1 n X j | > x 1 / q ) d x < .

Similar to (5), we have

  x - 1 / q | E i = - a i j = i + 1 i + n Y j '   | C n x - 1 / q E | Y | I ( | Y | > x 1 / q ) C n x - p ( 1 + δ ) / q E | Y | p ( 1 + δ ) I ( | Y | > x 1 / q ) C n - δ E | Y | p ( 1 + δ ) I ( | Y | > x 1 / q ) 0 ,    a s    n

Therefore

x - 1 / q | E i = - a i j = i + 1 i + n Y j ' | < 1 / 4 .

We have

J 2 C n = 1 n - 1 - q / p n q / p P ( | i = - a i j = i + 1 i + n Y j ' ' | x 1 / q / 2 ) d x + C n = 1 n - 1 - q / p n q / p P ( | i = - a i j = i + 1 i + n ( Y j ' - E Y j ' ) | x 1 / q / 4 ) d x         = : J 21 + J 22 .

For J21, from Lemma 3, Markov and Cr-inequalities, similar to the proof of I21, we have

J 21 C n = 1 n - 1 - q / p n q / p x - θ / q E | i = - a i j = i + 1 i + n Y j ' ' | θ d x C n = 1 n - q / p n q / p x - θ / q E | Y | θ I ( | Y | > x 1 / q ) d x = C n = 1 n - q / p m = n m q / p ( m + 1 ) q / p x - θ / q E | Y | θ I ( | Y | > x 1 / q ) d x C n = 1 n - q / p m = n m q / p - θ / p - 1 E | Y | θ I ( | Y | > m 1 / q ) = C m = 1 m q / p - θ / p - 1 E | Y | θ I ( | Y | > m 1 / q ) n = 1 m n - q / p { C m = 1 m - θ / p E | Y | θ I ( | Y | > m 1 / p ) ,                                             i f    q < p C m = 1 m - θ / p l o g ( m + 1 ) E | Y | θ I ( | Y | > m 1 / p ) ,                         i f    q = p C m = 1 m q / p - θ / p - 1 E | Y | θ I ( | Y | > m 1 / p ) ,                                     i f    q > p

{ C k = 1 k 1 - θ / p E | Y | θ I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,                          i f    q < p C k = 1 k 1 - θ / p l o g ( k + 1 ) E | Y | θ I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,        i f    q = p C k = 1 k q / p - θ / p E | Y | θ I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) ,                        i f    q > p

{ C E | Y | p < ,                                     i f    q < p C E | Y | p l o g ( | Y | + 1 ) < ,                 i f    q = p C E | Y | q < ,                                     i f    q > p (10)

For J22, from Lemma 1, Lemma 3, Markov and Ho¨lder inequalities, taking v=2, since 0<δ<min{2/p-1,(2-q)/p}, then

J 22 C n = 1 n - 1 - q / p n q / p x - 2 / q E { | i = - a i j = i + 1 i + n ( Y j ' - E Y j ' ) | 2 } d x C n = 1 n - 1 - q / p n q / p x - 2 / q E { i = - | a i | 1 / 2 ( | a i | 1 / 2 | j = i + 1 i + n ( Y j ' - E Y j ' ) | ) } 2 d x C n = 1 n - 1 - q / p n q / p x - 2 / q ( i = - | a i | ) { i = - | a i | E ( | j = i + 1 i + n ( Y j ' - E Y j ' ) | 2 ) } d x C n = 1 n - 1 - q / p n q / p x - 2 / q i = - | a i | j = i + 1 i + n ( 1 + g ( n ) ) E | Y ' | 2 d x C n = 1 n - 1 - q / p + δ n q / p x - 2 / q i = - | a i | { j = i + 1 i + n [ E | Y j | 2 I ( | Y j | x 1 / q ) + x 2 / q P ( | Y j | > x 1 / q ) ] } d x C n = 1 n - q / p + δ n q / p x - 2 / q [ E | Y | 2 I ( | Y | x 1 / q ) + x 2 / q P ( | Y | > x 1 / q ) ] d x = C n = 1 n - q / p + δ m = n m q / p ( m + 1 ) q / p [ x - 2 / q E | Y | 2 I ( | Y | x 1 / q ) + P ( | Y | > x 1 / q ) ] d x C n = 1 n - q / p + δ m = n [ m q / p - 2 / p - 1 E | Y | 2 I ( | Y | ( m + 1 ) 1 / q ) + m q / p - 1 P ( | Y | > x 1 / q ) ] C m = 1 [ m q / p - 2 / p - 1 E | Y | 2 I ( | Y | ( m + 1 ) 1 / q ) + m q / p - 1 P ( | Y | > x 1 / q ) ] n = 1 m n - q / p + δ C m = 1 [ m q / p - 2 / p - 1 E | Y | 2 I ( | Y | ( m + 1 ) 1 / q ) + m q / p - 1 P ( | Y | > x 1 / q ) ] m δ n = 1 m n - q / p { C m = 1 [ m - 2 / p + δ E | Y | 2 I ( | Y | ( m + 1 ) 1 / p ) + m δ P ( | Y | > m 1 / q ) ] ,                                    i f    q < p C m = 1 [ m - 2 / p + δ E | Y | 2 I ( | Y | ( m + 1 ) 1 / p ) + m δ P ( | Y | > m 1 / q ) ] l o g ( m + 1 ) ,                 i f    q = p C m = 1 [ m q / p - 2 / p + δ - 1 E | Y | 2 I ( | Y | ( m + 1 ) 1 / p ) + m q / p + δ - 1 P ( | Y | > m 1 / q ) ] ,                    i f    q > r p { C k = 1 k 1 - 2 / p + δ E | Y | 2 I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) + C E | Y | p δ ,                                           i f    q < p C k = 1 k 1 - 2 / p + δ l o g ( k + 1 ) E | Y | 2 I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) + C E | Y | p δ l o g ( | Y | + 1 ) ,    i f    q = p C k = 1 k q / p - 2 / p + δ E | Y | 2 I ( k 1 / p < | Y | ( k + 1 ) 1 / p ) + C E | Y | q ( 1 + δ ) ,                                    i f    q > p

{ C E | Y | p ( 1 + δ ) < ,                                                                                                            i f    q < p C E | Y | r p ( 1 + δ ) l o g ( | Y | + 1 ) < ,                                                                                       i f   q = p C E | Y | q q ( 1 + δ ) < ,                                                                                                           i f    q > p (11)

By (10) and (11), the proof of Theorem 2 is completed.

References

  1. Wang K Y, Wang Y B, Gao Q W. Uniform asymptotic for the finite-time probability of a new dependent risk model with a constant interest rate[J]. Methodology and Computing in Applied Probability, 2013, 15: 109-124. [CrossRef] [MathSciNet] [Google Scholar]
  2. Fang H Y, Ding S S, Li X Q, et al. Asymptotic approximations of ratio moments based on dependent sequences[J]. Mathematics, 2020, 8(3): 361. DOI: https://doi.org/10.3390/math8030361. [CrossRef] [MathSciNet] [Google Scholar]
  3. Ebrahimi N, Ghosh M. Multivariate negative dependence[J]. Communications in Statistics A, 1981, 10(4): 307-337. [CrossRef] [MathSciNet] [Google Scholar]
  4. Liu L. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9): 1290-1298. [CrossRef] [MathSciNet] [Google Scholar]
  5. Ibragimov I A. Some limit theorem for stationary processes[J]. Theory of Probability and Its Applications, 1962, 7: 349-382. [CrossRef] [Google Scholar]
  6. Burton R M, Dehling H. Large deviations for some weakly dependent random process[J]. Statistics and Probability Letters, 1990, 9: 397-401. [CrossRef] [MathSciNet] [Google Scholar]
  7. Li D L, Rao M B, Wang X C. Complete convergence of moving average process[J]. Statistics and Probability Letters,1992, 14: 111-114. [CrossRef] [MathSciNet] [Google Scholar]
  8. Chen P Y, Wang D C. Convergence rates for probabilities of moderate deviations for moving average process[J]. Acta Math Sin (Eng Ser), 2008, 24(4): 611-622. [CrossRef] [Google Scholar]
  9. Li Y X, Li J G. Weak convergence for partial sums of moving-average processes generated by stochastic process[J]. Acta Mathematica Sinica, 2004, 47(5): 873-884. [Google Scholar]
  10. Zhang L. Complete convergence of moving average processes under dependence assumptions[J]. Statistics and Probability Letters, 1996, 30: 165-170. [CrossRef] [MathSciNet] [Google Scholar]
  11. Chen P Y, Hu T C, Volodin A. Limiting behaviour of moving average processes under φ -mixing assumption[J]. Statistics and Probability Letters, 2009, 75: 105-111. [CrossRef] [MathSciNet] [Google Scholar]
  12. Song M Z, Zhu Q X. Convergence properties of the maximum partial sums for moving average process under Formula -mixing assumption[J]. Journal of Inequalities and Applications, 2019: 90, https://doi.org/10.1186/s13660-019-2038-2. [Google Scholar]
  13. Tao X R, Wu Y, Xia H, et al. Complete convergence of moving average process based on widely orthant dependent random variables[J]. Revista de la Real Academia de Ciencias Exactas Fisicas Naturales, Serie A, Matematicas, 2017, 111(3): 809-821. [Google Scholar]
  14. Guan L H, Xiao Y S, Zhao Y A. Complete moment convergence of moving average processes for m-WOD sequence[J]. Journal of Inequalities and Applications, 2021, 2021: 16. DOI: https://doi.org/10.1186/s13660-021-02546-6. [CrossRef] [Google Scholar]
  15. WU Q Y. Probability Limit Theory for Mixing Sequences[M]. Beijing: Science Press of China, 2006(Ch). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.