Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
Page(s) 396 - 404
DOI https://doi.org/10.1051/wujns/2022275396
Published online 11 November 2022
  1. Wang K Y, Wang Y B, Gao Q W. Uniform asymptotic for the finite-time probability of a new dependent risk model with a constant interest rate[J]. Methodology and Computing in Applied Probability, 2013, 15: 109-124. [CrossRef] [MathSciNet] [Google Scholar]
  2. Fang H Y, Ding S S, Li X Q, et al. Asymptotic approximations of ratio moments based on dependent sequences[J]. Mathematics, 2020, 8(3): 361. DOI: https://doi.org/10.3390/math8030361. [CrossRef] [MathSciNet] [Google Scholar]
  3. Ebrahimi N, Ghosh M. Multivariate negative dependence[J]. Communications in Statistics A, 1981, 10(4): 307-337. [CrossRef] [MathSciNet] [Google Scholar]
  4. Liu L. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9): 1290-1298. [CrossRef] [MathSciNet] [Google Scholar]
  5. Ibragimov I A. Some limit theorem for stationary processes[J]. Theory of Probability and Its Applications, 1962, 7: 349-382. [CrossRef] [Google Scholar]
  6. Burton R M, Dehling H. Large deviations for some weakly dependent random process[J]. Statistics and Probability Letters, 1990, 9: 397-401. [CrossRef] [MathSciNet] [Google Scholar]
  7. Li D L, Rao M B, Wang X C. Complete convergence of moving average process[J]. Statistics and Probability Letters,1992, 14: 111-114. [CrossRef] [MathSciNet] [Google Scholar]
  8. Chen P Y, Wang D C. Convergence rates for probabilities of moderate deviations for moving average process[J]. Acta Math Sin (Eng Ser), 2008, 24(4): 611-622. [CrossRef] [Google Scholar]
  9. Li Y X, Li J G. Weak convergence for partial sums of moving-average processes generated by stochastic process[J]. Acta Mathematica Sinica, 2004, 47(5): 873-884. [Google Scholar]
  10. Zhang L. Complete convergence of moving average processes under dependence assumptions[J]. Statistics and Probability Letters, 1996, 30: 165-170. [CrossRef] [MathSciNet] [Google Scholar]
  11. Chen P Y, Hu T C, Volodin A. Limiting behaviour of moving average processes under φ -mixing assumption[J]. Statistics and Probability Letters, 2009, 75: 105-111. [CrossRef] [MathSciNet] [Google Scholar]
  12. Song M Z, Zhu Q X. Convergence properties of the maximum partial sums for moving average process under Formula -mixing assumption[J]. Journal of Inequalities and Applications, 2019: 90, https://doi.org/10.1186/s13660-019-2038-2. [Google Scholar]
  13. Tao X R, Wu Y, Xia H, et al. Complete convergence of moving average process based on widely orthant dependent random variables[J]. Revista de la Real Academia de Ciencias Exactas Fisicas Naturales, Serie A, Matematicas, 2017, 111(3): 809-821. [Google Scholar]
  14. Guan L H, Xiao Y S, Zhao Y A. Complete moment convergence of moving average processes for m-WOD sequence[J]. Journal of Inequalities and Applications, 2021, 2021: 16. DOI: https://doi.org/10.1186/s13660-021-02546-6. [CrossRef] [Google Scholar]
  15. WU Q Y. Probability Limit Theory for Mixing Sequences[M]. Beijing: Science Press of China, 2006(Ch). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.