Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
|
|
---|---|---|
Page(s) | 383 - 395 | |
DOI | https://doi.org/10.1051/wujns/2022275383 | |
Published online | 11 November 2022 |
- Huo L A, Song N X. Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 461: 73-84. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wang Z X, Zhang W Y, Tan C W. On inferring rumor source for SIS model under multiple observations[C]//2015 IEEE International Conference on Digital Signal Processing. New York: IEEE, 2015: 755-759. [Google Scholar]
- Wang Y Q, Wang J. SIR rumor spreading model considering the effect of difference in nodes' identification capabilities[J]. International Journal of Modern Physics C, 2017, 28(5): 1750060. [NASA ADS] [CrossRef] [Google Scholar]
- Wan C, Li T, Sun Z C. Global stability of a SEIR rumor spreading model with demographics on scale-free networks[J]. Advances in Difference Equations, 2017, 2017: 253. [CrossRef] [Google Scholar]
- Zhao L J, Wang J J, Chen Y C, et al. SIHR rumor spreading model in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(7): 2444-2453. [NASA ADS] [CrossRef] [Google Scholar]
- Wang J J, Zhao L J, Huang R B. SIRaRu rumor spreading model in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 398: 43-55. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wang R, Rho S, Chen B W, et al. Modeling of large-scale social network services based on mechanisms of information diffusion: Sina Weibo as a case study[J]. Future Generation Computer Systems, 2017, 74: 291-301. [CrossRef] [Google Scholar]
- Zhang L J, Li H J, Zhao C H, et al. Social network information propagation model based on individual behavior[J]. China Communications, 2017, 14(7): 1-15. [Google Scholar]
- Wan C, Li T, Guan Z H, et al. Spreading dynamics of an e-commerce preferential information model on scale-free networks[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 467: 192-200. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Kang H Y, Fu X C. Epidemic spreading and global stability of an SIS model with an infective vector on complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 27(1/2/3): 30-39. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Zhao Z J, Liu Y M, Wang K X. An analysis of rumor propagation based on propagation force[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 443: 263-271. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Afassinou K. Analysis of the impact of education rate on the rumor spreading mechanism[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 414: 43-52. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Hill A L, Rand D G, Nowak M A, et al. Infectious disease modeling of social contagion in networks[J]. PLoS Computational Biology, 2010, 6(11): e1000968. [Google Scholar]
- Liu X Y, He D B, Yang L F, et al. A novel negative feedback information dissemination model based on online social network[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 513: 371-389. [NASA ADS] [CrossRef] [Google Scholar]
- Wang Q Y, Jin Y H, Yang T, et al. An emotion-based independent cascade model for sentiment spreading[J]. Knowledge-Based Systems, 2017, 116: 86-93. [CrossRef] [Google Scholar]
- Schwemmer C, Ziewiecki S. Social media sellout: The increasing role of product promotion on YouTube[J]. Social Media + Society, 2018, 4(3): 205630511878672. [CrossRef] [Google Scholar]
- Gao S, Chen L, Chen P. A fuzzy DEMATEL method for analyzing key factors of the product promotion [J]. Journal of Discrete Mathematical Sciences and Cryptography, 2018, 21(6): 1225-1228. [CrossRef] [Google Scholar]
- Hu H H, Lin J, Qian Y J, et al. Strategies for new product diffusion: Whom and how to target? [J]. Journal of Business Research, 2018, 83: 111-119. [CrossRef] [Google Scholar]
- Gao P, Du J G, Huang W D, et al. RETRACTED: The influence of consumer brand loyalty on brand remanufacturing market strategy[J]. The International Journal of Electrical Engineering & Education, 2020: 002072092093107. [Google Scholar]
- van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2): 29-48. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zubov S V. Problems of rated stability and lyapunov's first method[J]. IFAC Proceedings Volumes, 2001, 34(6): 1043-1048. [CrossRef] [Google Scholar]
- Zhou P, Hu X K, Zhu Z G, et al. What is the most suitable Lyapunov function? [J]. Chaos, Solitons & Fractals, 2021, 150: 111154. [NASA ADS] [Google Scholar]
- Mancilla-Aguilar J L, García R A. An extension of LaSalle's invariance principle for switched systems[J]. Systems & Control Letters, 2006, 55(5): 376-384. □ [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.