Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
Page(s) 375 - 382
DOI https://doi.org/10.1051/wujns/2022275375
Published online 11 November 2022
  1. Meyers M A, Chen P Y, Lin A Y, et al. Biological materials: Structure and mechanical properties [J]. Prog Mater Sci, 2008, 53(1): 1-206. [CrossRef] [Google Scholar]
  2. Gao Y, Li B, Wang J S, et al. Fracture toughness analysis of helical fiber-reinforced biocomposites [J]. J Mech Phys Solids, 2021, 146: 104206. [NASA ADS] [CrossRef] [Google Scholar]
  3. Yu W L, Wu X G, Cen H P, et al. Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis [J]. BioMed Eng OnLine, 2019, 18: 122. [CrossRef] [PubMed] [Google Scholar]
  4. Wang L L, Chen D, Jiang K, et al. New insights and perspectives into biological materials for flexible electronics [J]. Chem Soc Rev, 2017, 46: 6764-6815. [CrossRef] [PubMed] [Google Scholar]
  5. Alizadeh E, Dehestani M. Theoretical and numerical fracture analysis of bovine cortical bone under tensile loading in mode I and mixed-mode fracture [J]. Mech Adv Mater Struc, 2022. DOI: 10.1080/15376494.2021.1953645. [Google Scholar]
  6. Nalla R K, Kruzic J J, Kinney J H, et al. Effect of aging on the toughness of human cortical bone: Evaluation by R-curves [J]. Bone, 2004, 35(6): 1240-1246. [CrossRef] [PubMed] [Google Scholar]
  7. Li S M, Abdel-Wahab A, Silberschmidt V V. Analysis of fracture processes in cortical bone tissue [J]. Eng Fract Mech, 2013, 110: 448-458. [CrossRef] [Google Scholar]
  8. An B B, Liu Y, Arola D, et al. Fracture toughening mechanism of cortical bone: An experimental and numerical approach [J]. J Mech Behav Biomed Mater, 2011, 4(7): 983-992. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  9. Kumar A, Ghosh R. A review on experimental and numerical investigations of cortical bone fracture [J]. Proc IMechE Part H: J Engineering in Medicine, 2022, 236(3): 297-319. [CrossRef] [PubMed] [Google Scholar]
  10. Hogan H A. Micromechanics modelling of Haversian cortical bone properties [J]. J Biomech, 1992, 25(5): 549-556. [CrossRef] [PubMed] [Google Scholar]
  11. Najafi A R, Arshi A R, Eslami M R, et al. Micromechanics fracture in osteonal cortical bone: A study of the interactions between microcrack propagation, microstructure and the material properties [J]. J Biomech, 2007, 40(12): 2788-2795. [CrossRef] [PubMed] [Google Scholar]
  12. Feerick E, Liu X G, McGarry P. Anisotropic mode-dependent damage of cortical bone using the extended finite element method [J]. J Mech Behav Biomed Mater, 2013, 20: 77-89. [CrossRef] [PubMed] [Google Scholar]
  13. Soni A, Kumar S, Kumar N. Effect of parametric uncertainties on fracture behavior of cortical bone using XIGA [J]. Eng Fract Mech, 2020, 233: 107079. [CrossRef] [Google Scholar]
  14. Maghami E, Josephson T O, Moore J P, et al. Fracture behavior of human cortical bone: Role of advanced glycation end-products and microstructural features [J]. J Biomech, 2021, 125: 110600. [CrossRef] [PubMed] [Google Scholar]
  15. Guo X E, Liang L C, Goldstein S A. Micromechanics of osteonal cortical bone fracture [J]. J Biomech Eng, 1998, 120(1): 112-117. [CrossRef] [PubMed] [Google Scholar]
  16. Najafi A R, Arshi A R, Eslami M R, et al. Haversian cortical bone model with many radial microcracks: An elastic analytic solution [J]. Med Eng Phys, 2007, 29(6): 708-717. [CrossRef] [PubMed] [Google Scholar]
  17. Najafi A R, Arshi A R, Saffar K P, et al. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction [J]. J Mech Behav Biomed Mater, 2009, 2(3): 217-223. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  18. Chen Y G, Wang W S, Li X. Fracture analysis of cortical bone under the condition of cement line debonding and osteon pullout [J]. Int J Biomath, 2018, 11(2): 1850023. [CrossRef] [MathSciNet] [Google Scholar]
  19. Muskhelishvili N I. Singular Integral Equations [M]. Groningen: P Noordhoff, 1958. [Google Scholar]
  20. Li X. Integral Equations [M]. Beijing: Science Press, 2008(Ch). [Google Scholar]
  21. Mubeen B, Ahmed I, Jameel A. Study of mechanical properties of bones and mechanics of bone fracture [C]// Proceedings of 60th Congress of ISTAM. Washington D C: IEEE Press, 2015:1-7. [Google Scholar]
  22. Presbitero G, O'Brien F J, Lee T C, et al. Distribution of microcrack lengths in bone in vivo and in vitro [J]. J Theor Biol, 2012, 304: 164-171. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  23. Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Groningen: P Noordhoff, 1977. [CrossRef] [MathSciNet] [Google Scholar]
  24. Li X, Li Z X. Effect of a periodic elastic gasket on periodic cracks [J]. Eng Fract Mech, 1993, 46(1): 127-131. [CrossRef] [Google Scholar]
  25. Li X. Applications of Doubly Quasi-periodic Boundary Value Problems in Elasticity Theory [M]. Aachen: Shaker Verlag, 2001. [Google Scholar]
  26. Dundurs J, Mura T. Interaction between an edge dislocation and a circular inclusion [J]. J Mech Phys Solids, 1964, 12(3): 177-189. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  27. Erdogan F, Gupta G D, Ratwani M. Interaction between a circular inclusion and an arbitrarily oriented crack [J]. J Appl Mech, 1974, 41(4): 1007-1013. [NASA ADS] [CrossRef] [Google Scholar]
  28. Hills D A, Kelly P A, Dai D N, et al. Solution of Crack Problems: The Distributed Dislocation Technique [M]. Dordrecht: Kluwer, 1996. [CrossRef] [Google Scholar]
  29. Erdogan F, Gupta G D, Cook T S. Numerical solution of singular integral equations [C]// Methods of Analysis and Solutions of Crack Problems. Leyden: Noordhoff , 1973: 368-425. [Google Scholar]
  30. Ural A, Mischinski S. Multiscale modeling of bone fracture using cohesive finite elements [J]. Eng Fract Mech, 2013, 103: 141-152. [CrossRef] [Google Scholar]
  31. Mohsin S, O'Brien F J, Lee T C. Osteonal crack barriers in ovine compact bone [J]. Multidiscip J Anat, 2006, 208(1): 81-89. [Google Scholar]
  32. O'Brien F J, Taylor D, Lee T C. The effect of bone microstructure on the initiation and growth of microcracks [J]. J Orthop Res, 2005, 23(2): 475-480. [CrossRef] [PubMed] [Google Scholar]
  33. O'Brien F J, Taylor D, Lee T C. Bone as a composite material: The role of osteons as barriers to crack growth in compact bone [J]. Int J Fatigue, 2007, 29(6): 1051-1056. [CrossRef] [Google Scholar]
  34. Vashishth D, Behiri J C, Bonfield W. Crack growth resistance in cortical bone: Concept of microcrack toughening [J]. J Biomech, 1997, 30(8): 763-769. [CrossRef] [PubMed] [Google Scholar]
  35. Kruzic J J, Scott J A, Nalla R K, et al. Propagation of surface fatigue cracks in human cortical bone [J]. J Biomech, 2006, 39(5): 968-972. [CrossRef] [PubMed] [Google Scholar]
  36. Maghami E, Moore J P, Josephson T O, et al. Damage analysis of human cortical bone under compressive and tensile loadings [J]. Comput Methods Biomech Biomed Engin, 2022, 25(3): 342-357. [CrossRef] [PubMed] [Google Scholar]
  37. Deng Q, Chen Y, Lee J D. An investigation of the microscopic mechanism of fracture and healing processes in cortical bone [J]. Int J Damage Mech, 2009, 18(5): 491-502. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.