Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
|
|
---|---|---|
Page(s) | 372 - 374 | |
DOI | https://doi.org/10.1051/wujns/2022275372 | |
Published online | 11 November 2022 |
- Hou X D. Permutation polynomials over finite fields—A survey of recent advances [J]. Finite Fields Appl, 2015, 32: 82-119. [CrossRef] [MathSciNet] [Google Scholar]
- Li N Q, Zeng X Y. A survey on the applications of Niho exponents [J]. Cryptogr Commun, 2019, 11(3): 509-548. [CrossRef] [MathSciNet] [Google Scholar]
- Wang Q. Polynomials over finite fields: An index approach [J]. Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, 2019, 23: 319-348. [CrossRef] [Google Scholar]
- Mesnager S, Qu L J. On two-to-one mappings over finite fields [J]. IEEE Transactions on Information Theory, 2020, 65(12): 7884-7895. [Google Scholar]
- Li K Q, Mesnager S, Qu L J. Further study of 2-to-1 mappings over [J]. IEEE Transactions on Information Theory, 2021, 67(6): 3486-3496. [CrossRef] [MathSciNet] [Google Scholar]
- Yuan M, Zheng D B, Wang Y P. Two-to-one mappings and involutions without fixed points over [J]. Finite Fields Appl, 2021, 76: 101913. [CrossRef] [Google Scholar]
- Gao Y, Yao Y F, Shen L Z. -to-1 mappings over finite fields [J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2021, E104.A(11): 1612-1618. [NASA ADS] [CrossRef] [Google Scholar]
- Niu T L, Li K Q, Qu L J,et al. Characterizations and constructions of -to-1 mappings over finite fields [EB/OL]. [2020-10-29]. https://arXiv.org/abs/2201.10290v1 [cs.IT]. [Google Scholar]
- Kyureghyan K, Zieve M. Permutation polynomials of the form [C]// Contemporary Developments in Finite Fields and Applications. Singapore: World Scientific, 2016: 178-194. [Google Scholar]
- Lavorante V. New families of permutation trinomials constructed by permutations of [EB/OL]. [2021-10-12].https//arXiv.org/abs/2105.12012.v4 [math.CO]. [Google Scholar]
- Qin X E, Yan L. Constructing permutation trinomials via monomials on the subsets of [J]. Applicable Algebra in Engineering, Communication and Computing, 2021, 33: 505-512. DOI: 10.1007/s00200-021-00505-8. [Google Scholar]
- Zheng D B, Yuan M, Yu L. Two types of permutation polynomials with special forms [J]. Finite Fields Appl, 2019, 56 : 1-16. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.