Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
Page(s) 367 - 371
DOI https://doi.org/10.1051/wujns/2022275367
Published online 11 November 2022
  1. Grünbaum B. Measures of symmetry for convex sets[C]//Convexity, Proceedings of Symposia in Pure Mathematics 7. Providence : American Math Society, 1963: 233-270. [Google Scholar]
  2. Brandenberg R, Merino B G. The asymmetry of complete and constant width bodies in general normed spaces and the Jung constant[J].Israel Journal of Mathematics, 2017, 218(1): 489-510. [CrossRef] [MathSciNet] [Google Scholar]
  3. Guo Q. On p-measures of asymmetry for convex bodies[J]. Adv Geom, 2012, 12(2): 287-301. [CrossRef] [MathSciNet] [Google Scholar]
  4. Guo Q, Guo J, Su X. The measures of asymmetry for coproducts of convex bodies[J]. Pacific J Math, 2015, 276(2): 401-418. [CrossRef] [MathSciNet] [Google Scholar]
  5. Jin H L. The log-Minkowski measure of asymmetry for convex bodies [J]. Geom Dedicata, 2018, 196(1): 27-34. [CrossRef] [MathSciNet] [Google Scholar]
  6. Jin H L. Electrostatic capacity and measure of asymmetry[J]. Proc Amer Math Soc, 2019, 147(9): 4007-4019. [CrossRef] [MathSciNet] [Google Scholar]
  7. Töth G. Measures of Symmetry for Convex Sets and Stability[M]. Berlin: Springer-Verlag, 2015. [CrossRef] [Google Scholar]
  8. Besicovitch A S. Measures of asymmetry for convex curves, II. Curves of constant width[J]. J Lond Math Soc, 1951, 26(2): 81-93. [CrossRef] [Google Scholar]
  9. Groemer H, Wallen L J. A measure of asymmetry for domains of contant width[J]. Beitr Algebre Geom, 2001, 26:517-521. [Google Scholar]
  10. Guo Q. Convexity theory on spherical spaces[J]. Science in China (Series A), 2020, 50(12):1745-1772. [Google Scholar]
  11. Jin H L, Guo Q. Asymmetry of convex bodies of constant width[J]. Discrete Comput Geom, 2012, 47(2): 415-423. [CrossRef] [MathSciNet] [Google Scholar]
  12. Dekster B V. In- and circumcenters of manifolds of constant width[J]. Geom Dedicata, 1991, 38(1): 67-71. [MathSciNet] [Google Scholar]
  13. Dekster B V. The Jung theorem for spherical and hyperbolic spaces[J]. Acta Math Hungar, 1995, 67(4): 315-331. [CrossRef] [MathSciNet] [Google Scholar]
  14. Leichtweiss K. Curves of contant width in the non-Euclidean geometry[J]. Abh Math Sem Univ Hamburg, 2005,75(1): 257-284 . [CrossRef] [MathSciNet] [Google Scholar]
  15. Robinson R M. Note on convex regins on the sphere[J]. Bull Amer Math Soc, 1938, 44: 115-116. [CrossRef] [MathSciNet] [Google Scholar]
  16. Santaló L. Convex regions on the n-dimensional spherical surface[J]. Annals of Mathematics, 1946, 47(3): 448-459. [CrossRef] [MathSciNet] [Google Scholar]
  17. Lassak M. Spherical geometry—A survey on width and thickness of convex bodies[C]//Surveys in Geometry I. Berlin: Springer-Verlag, 2022: 7-47. [Google Scholar]
  18. Jin H L, Guo Q. A note on the extremal bodies of constant width for the Minkowski measure[J]. Geom Dedicata, 2013, 164(1): 227-229. [CrossRef] [MathSciNet] [Google Scholar]
  19. Chakerian G D, Groemer H. Convex bodies of constant width[C]// Convexity and Its Applications. Basel: Birkhäuser Basel, 1983: 49-96. [Google Scholar]
  20. Lassak M. Width of spherical convex bodies[J]. Aequat Math, 2015, 89(3): 555-567. [CrossRef] [Google Scholar]
  21. Lassak M, Musielak M. Spherical bodies of constant width[J]. Aequat Math, 2018, 92(4): 627-640. [CrossRef] [Google Scholar]
  22. Martini H, Montejano L, Oliveros D. Bodies of Constant Width: An Introduction to Convex Geometry with Applications[M]. Cham: Springer -Verlag, 2019. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.