Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
|
|
---|---|---|
Page(s) | 361 - 366 | |
DOI | https://doi.org/10.1051/wujns/2022275361 | |
Published online | 11 November 2022 |
- Liu S Q, Wang F, Zhao H J. Global existence and asymptotics of solutions of the Cahn-Hilliard equation[J]. J Differential Equations, 2007, 238(2): 426-469. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Caffarelli L A, Muler N E. An bound for solutions of the Cahn-Hilliard equation[J]. Arch Ration Mech Anal, 1995, 133(2): 129-144. [NASA ADS] [CrossRef] [Google Scholar]
- Cahn J W, Hilliard J E. Free energy of a nonuniform system[J]. I Interfacial Free Energy J Chem Phys, 1958, 28(2): 258-267. [Google Scholar]
- Efendiev M, Miranville A, Zelik S. Exponential attractors for a singularly perturbed Cahn-Hilliard system[J]. Math Nachr, 2004, 272(1): 11-31. [CrossRef] [MathSciNet] [Google Scholar]
- Elliott C M, Zheng S. On the Cahn-Hilliard equation[J]. Arch Ration Mech Anal, 1986, 96(4): 339-357. [NASA ADS] [CrossRef] [Google Scholar]
- Gatti S, Grasselli M, Miranville A. On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation[J]. J Math Anal Appl, 2005, 312(1): 230-247. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Zheng S M, Milani A. Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations[J]. Nonlinear Anal, Theory Methods Appl, Ser A, 2004, 57 (5/6): 843-877. [CrossRef] [MathSciNet] [Google Scholar]
- Zheng S M, Milani A. Global attractors for singular perturbations of the Cahn-Hilliard equations[J]. J Differ Equations, 2005, 209(1): 101-139. [NASA ADS] [CrossRef] [Google Scholar]
- Galenko P, Lebedev V. Non-eqilibrium effects in spinodal decomposition of a binary System[J]. Phys Lett, 2008, 372 (7): 985-989. [NASA ADS] [CrossRef] [Google Scholar]
- Grasselli M, Petzeltová H, Schimperna G. Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term[J]. J Differ Equations, 2007, 239(1): 38-60. [NASA ADS] [CrossRef] [Google Scholar]
- Xu H M, Shi Y F. Global existence and Lp decay estimate of solutions for viscous Cahn-Hilliard equation with inertial term[J]. Wuhan University Journal of Natural Sciences, 2019, 24(6): 461-466. [CrossRef] [Google Scholar]
- Grasselli M, Shilmperna G, Segatti A, et al. On the 3D Cahn-Hilliard equation with inertial term[J]. J Evol Equ, 2009, 9(2): 371-404. [CrossRef] [MathSciNet] [Google Scholar]
- Grasselli M, Shilmperna G, Zelik S. On the 2D Cahn-Hilliard equation with inertial term[J]. Commun Partial Differ Equations, 2009, 34(2): 137-170. [CrossRef] [Google Scholar]
- Grasselli M, Shilmperna G, Zelik S. Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term[J]. Nonlinearity, 2010, 23(3): 707-737. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wang W K, Wu Z G. Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions[J]. J Math Anal Appl, 2012, 387(1): 349-358. [CrossRef] [MathSciNet] [Google Scholar]
- Li N Y, Mi L F. Pointwise estimate of solutions for the Cahn-Hilliard equation with inertial term in multi-dimensions[J]. J Math Annal Appl, 2013, 397(1): 75-87. [CrossRef] [Google Scholar]
- Wang W K, Yang T. The pointwise estimates of solutions for Euler equations with damping in multi-dimensions[J]. J Differential Equations, 2001, 173(2): 410-450. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.