Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
Page(s) 405 - 414
DOI https://doi.org/10.1051/wujns/2022275405
Published online 11 November 2022
  1. Chinese Academy of Sciences. Chinese Discipline Development Strategy: Software Science and Engineering [M]. Beijing: Science Press, 2020(Ch). [Google Scholar]
  2. Wang J, Zhan N J, Feng X Y, et al. Overview of formal methods [J]. Journal of Software, 2019, 30(1): 33-61(Ch). [Google Scholar]
  3. Michael J B, Dinolt G W, Drusinsky D. Open questions in formal methods [J]. Computer, 2020, 53(5): 81-84. [CrossRef] [Google Scholar]
  4. Schaffer K, Voas J. What happened to formal methods for security? [J]. Computer, 2016, 49(8): 70-79. [CrossRef] [Google Scholar]
  5. Brooks F P, Frederick P. The Mythical Man-Month [M]. Beijing: People Post Press, 2010(Ch). [Google Scholar]
  6. Dijkstra E W. A Discipline of Programming [M]. Englewood: Prentice Hall, 1976. [Google Scholar]
  7. Dijkstra E W, Feijen W. A Method of Programming [M]. London: Addison-Wesley Publishing Company, 1988. [Google Scholar]
  8. Gu T L. Formal Method of Software Development [M]. Beijing: Higher Education Press, 2005(Ch). [Google Scholar]
  9. Morgan C. Programming from Specifications [M]. Englewood: Prentice Hall, 1998. [Google Scholar]
  10. Kourie D G, Watson B W. The Correctness-by-Construction Approach to Programming [M]. Berlin: Springer-Verlag, 2012. [CrossRef] [Google Scholar]
  11. Watson B W, Kourie D G, Cleophas L. Experience with correctness-by-construction [J]. Science of Computer Programming, 2015, 97(1):55-58. [CrossRef] [Google Scholar]
  12. Runge T, Schaefer I, Cleophas L, et al. Tool support for correctness-by-construction [C]// International Conference on Fundamental Approaches to Software Engineering. Cham: Springer-Verlag, 2019: 25-42. [Google Scholar]
  13. Xue J Y, You Z, Hu Q M, et al. PAR: A practicable formal method and its supporting platform [C]// International Conference on Formal Engineering Methods. Cham: Springer-Verlag, 2018: 70-86. [Google Scholar]
  14. You Z, Xue J Y, Zuo Z K. Unified formal derivation and automatic verification of three binary-tree traversal non-recursive algorithms [J]. Cluster Computing, 2016, 19(4): 2145-2156. [CrossRef] [Google Scholar]
  15. Nipkow T, Klein G. Concrete Semantics with Isabelle/HOL [M]. Berlin: Springer-Verlag, 2020. [Google Scholar]
  16. Li Y, Pang J. Formalizing provable anonymity in Isabelle/HOL [J]. Formal Aspects of Computing, 2015, 27(2):255-282. [CrossRef] [MathSciNet] [Google Scholar]
  17. Stannett M, Nemeti I. Using Isabelle/HOL to verify first-order relativity theory [J]. Journal of Automated Reasoning, 2014, 52(4): 361-378. [CrossRef] [MathSciNet] [Google Scholar]
  18. Paulson L C. A mechanised proof of gdel's incompleteness theorems using nominal Isabelle [J]. Journal of Automated Reasoning, 2015, 55(1): 1-37. [CrossRef] [MathSciNet] [Google Scholar]
  19. Yushkovskiy A, Tripakis S. Comparison of two theorem provers: Isabelle/HOL and Coq [C]// Proceedings in Computer Science. Helsinki: Aalto University, 2018:1-18. [Google Scholar]
  20. Lai Y. Development of APLA to C++ Automatic Program Conversion System [D]. Nanchang: Jiangxi Normal University, 2002(Ch). [Google Scholar]
  21. Zuo Z K, Liu Z H, Huang Q, et al. The comparative study on the generic features of Apla and programming languages [J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 2019, 43(5): 454-461(Ch). [Google Scholar]
  22. Zhang Q, Wang C J, Luo H M, et al. The generation method and automatical transformation system of WSDL→Radl-WS [J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 2018, 42(3): 298-303(Ch). [Google Scholar]
  23. Qi L L, Yang Q H, You Y. Formal derivation of algorithm and automatic verification based on Isabelle [J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 2018, 42(4):379-383(Ch). [Google Scholar]
  24. Si X, Dai H, Raghothaman M, et al. Learning loop invariants for program verification [C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal: Neural Information Processing Systems Foundation, 2018: 7762-7773. [Google Scholar]
  25. Nipkov T, Paulson T. High-Order Logic Auxiliary Proof System [M]. Beijing: Beijing Institute of Technology Press, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.