Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 5, October 2022
Page(s) 415 - 423
DOI https://doi.org/10.1051/wujns/2022275415
Published online 11 November 2022
  1. You Z, Xue J Y. Formal derivation and correctness verification of Hanoi tower nonrecursion algorithm [J]. Journal of Computer Research and Development, 2008, 45(Suppl): 143-147(Ch). [Google Scholar]
  2. Zhu Z Y, Cheng Z. Non-recursive implementation of recursive algorithm [J]. Journal of Chinese Computer Systems, 2003, 23(3): 567-570(Ch). [Google Scholar]
  3. Arora N, Kumar T V, Kumar S. Modified nonrecursive algorithm for reconstructing a binary tree [J]. International Journal of Computer Applications, 2012, 43(10): 25-28. [NASA ADS] [CrossRef] [Google Scholar]
  4. Das V V. A new non-recursive algorithm for reconstructing a binary tree from its traversals [C]//2010 International Conference on Advances in Recent Technologies in Communication and Computing. Kottayam: IEEE, 2010: 261-263. [Google Scholar]
  5. Xue J Y. Two new strategies for developing loop invariants and their applications [J]. Journal of Computer Science and Technology, 1993, 8(3): 147-154(Ch). [CrossRef] [MathSciNet] [Google Scholar]
  6. Gries D. The Science of Programming [M]. New York: Springer-Verlag, 1981. [CrossRef] [Google Scholar]
  7. Dijkstra E W. A Discipline of Programming [M]. Englewood Cliffs: Prentice Hall, 1976. [Google Scholar]
  8. Loginov A, Reps T, Sagiv M. Automated verification of the Deutsch-Schorr-Waite tree-traversal algorithm [C]//International Static Analysis Symposium. Berlin: Springer-Verlag, 2006: 261-279. [MathSciNet] [Google Scholar]
  9. Qin S C, He G H, Chin W N. Invariants synthesis over a combined domain for automated program verification [C]//Theories of Programming and Formal Methods. Berlin: Springer -Verlag, 2013: 304-325. [Google Scholar]
  10. You Z, Xue J Y, Zuo Z K. Unified formal derivation and automatic verification of three binary tree traversal nonrecursive algorithms [J]. Cluster Computing, 2016, 19(4): 2145-2156. [CrossRef] [Google Scholar]
  11. Zuo Z K, Fang Y, Huang Q. Derivation and formal proof of non-recursive algorithm for sorting binary tree [J]. Journal of Jiangxi Normal University (Natural Science), 2020, 44(6): 625-6329(Ch). [Google Scholar]
  12. Shi H H, Xue J Y. Research on automated sorting algorithms generation based on PAR [J]. Journal of Software, 2012, 23(9): 2248-2260(Ch). [CrossRef] [Google Scholar]
  13. Xue J Y, You Z, Hu Q. PAR: A practicable formal method and its supporting platform [C]//International Conference on Formal Engineering Methods. Berlin: Springer-Verlag, 2018: 70-86. [Google Scholar]
  14. Lai Y. Development of APLA to C++ Automatic Program Transformation System [D]. Nanchang: Jiangxi Normal University, 2002(Ch). [Google Scholar]
  15. Xue J Y, Gries D. Developing a linear algorithm for cubing a cycle permutation [J]. Science of Computer Programming, 1988, 11(3): 161-165. [CrossRef] [MathSciNet] [Google Scholar]
  16. You Z. The Analysis of Isabelle Theorem Prover and Its Application in PAR Method/PAR Platform [D]. Nanchang: Jiangxi Normal University, 2009(Ch). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.