Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 5, October 2025
Page(s) 479 - 489
DOI https://doi.org/10.1051/wujns/2025305479
Published online 04 November 2025

© Wuhan University 2025

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

Let A be a *-algebra over the complex field C. For A,BA, define the Jordan *-product of A and B by AB=AB+BA* and the skew Lie product of A and B by [A,B]*=AB-BA*. Among some research topics, the Jordan *-product and the skew Lie product are of great significance[1-9]. Recall that an additive map Φ: AA is an additive derivation if Φ(AB)=Φ(A)B+AΦ(B) for all A,BA. In addition, Φ is said to be an additive *-derivation if Φ is an additive derivation and Φ(A*)=Φ(A)* for all AA. Note that Φ is nonlinear if its additivity is removed.

Let d :AA be a nonlinear map, d is called

(i) a nonlinear Jordan triple *-derivation if d(ABC)=d(A)BC+Ad(B)C+ABd(C) for all A,B,CA, where ABC=(AB)C.

(ii) a nonlinear skew Lie triple derivation if d([[A, B]*, C]*)=[[d(A), B]*, C]*+[[A, d(B)]*, C]*+[[A,B]*, d(C)]* for all A,B,CA. The characterization of Jordan triple *-derivations and skew Lie triple derivations have been studied by many authors[10-19]. Recently the derivations corresponding to the new products of the mixture of various products have attracted the attentions of many researchers (see Refs. [20-22]). Li and Zhang[23] considered the mixed Jordan triple *-product [AB,C]* and investigated the nonlinear mixed Jordan triple *-derivation d: AA, i.e.

d ( [ A B , C ] * ) = [ d ( A ) B , C ] * + [ A d ( B ) , C ] * + [ A B , d ( C ) ] * ,

and they proved a nonlinear mixed Jordan triple *-derivation is an additive *-derivation on *-algebras under some mild condition.

Let N be the set of non-negative integers, D={Φn}nN be a family of additive maps Φn: AA and Φ0 be the identity map on A. Then D={Φn}nN is called an additive higher derivation if for every nN, Φn(AB)=i+j=nΦi(A)Φj(B) for all A,BA. D={Φn}nN is said to be an additive *-higher derivation if D={Φn}nN is an additive higher derivation with Φn(A*)=Φn(A)* for all AA and nN. In addition, D={Φn}nN is nonlinear if the additivity is removed. In recent years, many authors study different types of nonlinear higher derivations. Some researchers studied the nonlinear higher derivations on semi-prime rings and triangular algebras[24-26].

The questions of characterizing Lie higher derivations and the relationship between different types of higher derivations have been studied by many authors (see Refs. [27-29]).

Let d0 be the identity map on A, and let dn: AA be a nonlinear map for all n1. We say that D={dn}nN is

(i) a nonlinear Jordan triple *-higher derivation if dn(ABC)=i+j+k=ndi(A)dj(B)dk(C).

(ii) a nonlinear skew Lie triple higher derivation if dn([[A,B]*,C]*)=i+j+k=n[[di(A),dj(B)]*,dk(C)] for all A,B,CA and nN. Some reasearchers proved that a nonlinear Jordan triple *-higher derivation or skew Lie triple higher derivation is an additive *-higher derivation on standard operator algebras[30-31]. Motivated by the related works[23, 30-31], we consider nonlinear mixed Jordan triple *-higher derivations D={dn}nN, that is, dn([AB,C]*)=i+j+k=n[di(A)dj(B),dk(C)]* for all A,B,CA and nN. It is clear that d1 is a nonlinear mixed Jordan triple *-derivation on A if D={dn}nN is a nonlinear mixed Jordan triple *-higher derivation of A, then we will study the nonlinear mixed Jordan triple *-higher derivations on A.

1 Nonlinear Mixed Jordan Triple *-Derivation

Theorem 1   Let A be a *-algebra with the unit I. Assume that A contains a nontrivial projection P which satisfies for AA ,

X A P = 0     i m p l i e s     X = 0 (1)

and

X A ( I - P ) = 0     i m p l i e s     X = 0 (2)

Then every nonlinear mixed Jordan triple *-derivation d:AA, which satisfies

d ( [ A B , C ] * ) = [ d ( A ) B , C ] * + [ A d ( B ) , C ] * + [ A B , d ( C ) ] *

for all A,B,CA, is an additive *-derivation.

Proof   Let P1=P and P2=I-P. We write Ajk=PjAPk for j, k=1,2. Then A=j,k=12Ajk.

In the sequel Ajk indicates that AjkAjk. We set S={AA, A=A*}. We complete the proof by several Claims.

Claim 1 d n ( 0 ) = 0 for all nN.

Proof   It follows from [00,0]*=0 that

d ( 0 ) = d ( [ 0 0,0 ] * ) = [ d ( 0 ) 0,0 ] * + [ 0 d ( 0 ) , 0 ] * + [ 0 0 , d ( 0 ) ] * = 0 .

Claim 2 d has the following properties: (a) For any λR, d(λI)Z(A) and d(λI)=d(λI)*; (b) For any AS, d(A)=d(A*)=d(A)*; (c) For any λC, d(λI)Z(A).

Proof   (a) It follows from [IλI, I]*=0 that

0 = d ( [ I     λ I , I ] * ) = [ d ( I )     λ I ,   I ] * + [ I     d ( λ I ) ,   I ] * + [ I     λ I ,   d ( I ) ] * = [ I     d ( λ I ) ,   I ] * = 2 d ( λ I ) - 2 d ( λ I ) * .

From this we get d(λI)=d(λI)*. Then for all AA, it follows from [λI  λI, A]*=0 that

0 = d ( [ λ I     λ I , A ] * ) = [ d ( λ I )     λ I , A ] * + [ λ I     d ( λ I ) , A ] * + [ λ I     λ I , d ( A ) ] * = [ d ( λ I )     λ I , A ] * + [ λ I     d ( λ I ) , A ] * = 4 λ d ( λ I ) A - 4 λ A d ( λ I ) * .

Then we get d(λI)A=Ad(λI), for all AA, which implies d(λI)Z(A).

(b) For any AS, we see from Claim 2(a) that

0 = d ( [ I     A , I ] * ) = [ d ( I )     A , I ] * + [ I     d ( A ) , I ] * + [ I     A , d ( I ) ] * = [ I     d ( A ) , I ] * = 2 d ( A ) - 2 d ( A ) * .

(c) For any λC and AS, we see from Claim 2(a) and Claim 2(b) that

0 = d ( [ A     I , λ I ] * ) = [ d ( A )     I , λ I ] * + [ A     d ( I ) , λ I ] * + [ A     I , d ( λ I ) ] * = [ A     I , d ( λ I ) ] * = 2 A d ( λ I ) - 2 d ( λ I ) A .

Thus Ad(λI)=d(λI)A, for all AS, which implies d(λI)Z(A).

Claim 3 For any AA, d(12I)=d(12iI)=0, d(iA)=id(A).

Proof   It follows from [12I  12iI,12iI]*=-12I , where i is the imaginary unit. We see from Claim 2 that

d ( - 1 2 I ) = d ( [ 1 2 I     1 2 i I , 1 2 i I ] * )   = [ d ( 1 2 I )     1 2 i I , 1 2 i I ] * + [ 1 2 I     d ( 1 2 i I ) , 1 2 i I ] * + [ 1 2 I     1 2 i I , d ( 1 2 i I ) ] *

                                     = - d ( 1 2 I ) + 1 2 i ( d ( 1 2 i I ) - d ( 1 2 i I ) * ) + i d ( 1 2 i I ) .

Since d(12I), d(-12I), i(d(12iI)-d(12iI)*) are self-adjoint, id(12iI) is also self-adjoint. Hence

d ( - 1 2 I ) = - d ( 1 2 I ) + 2 i d ( 1 2 i I ) . (3)

Similarly, we can also obtain from the fact that -12I=[12I(-12iI), -12iI]*, that

d ( - 1 2 i I ) = - d ( - 1 2 i I ) * (4)

and

d ( - 1 2 I ) = - d ( 1 2 I ) - 2 i d ( - 1 2 i I ) . (5)

Now by (3) and (5) we have

d ( - 1 2 i I ) = - d ( 1 2 i I ) . (6)

It follows from (4) and (6), we compute

d ( 1 2 i I ) = d ( [ 1 2 I     ( - 1 2 i I ) , - 1 2 I ] * )

                          = [ d ( 1 2 I )   ( - 1 2 i I ) , - 1 2 I ] * + [ 1 2 I     d ( - 1 2 i I ) , - 1 2 I ] * + [ 1 2 I     ( - 1 2 i I ) ,   d ( - 1 2 I ) ] *

                          = i d ( 1 2 I ) - 1 2 ( d ( - 1 2 i I ) - d ( - 1 2 i I ) * ) - i d ( - 1 2 I ) .

Then we can get

d ( 1 2 I ) = d ( - 1 2 I ) . (7)

Now we compute

              d ( - 1 2 i I ) = d ( [ - 1 2 I     ( - 1 2 i I ) , - 1 2 I ] * )

                               = [ d ( - 1 2 I )   ( - 1 2 i I ) , - 1 2 I ] * + [ - 1 2 I     d ( - 1 2 i I ) , - 1 2 I ] * + [ - 1 2 I   ( - 1 2 i I ) , d ( - 1 2 I ) ] *

                               = 2 i d ( - 1 2 I ) + 1 2 ( d ( - 1 2 i I ) - d ( - 1 2 i I ) * ) .

By using equation (4) we get d(-12I)=0, then by equations (3), (6) and (7), we have d(-12I)=d(12I)=d(-12iI)=d(12iI)=0.

For any AA we have

d ( i A ) = d ( [ 1 2 I     1 2 i I ,   A ] * ) = [ d ( 1 2 I ) 1 2 i I ,   A ] * + [ 1 2 I d ( 1 2 i I ) ,   A ] * + [ 1 2 I   1 2 i I ,   d ( A ) ] * = [ 1 2 I 1 2 i I ,   d ( A ) ] * = i d ( A ) .

Claim 4[23] d is additive.

Claim 5 For any AA, d(A*)=d(A)*.

Proof   For any AA, where A=A1+iA2, A1,A2S, it follows from Claim 2, Claim 3 and Claim 4 that

d ( A * ) = d ( A 1 - i A 2 ) = d ( A 1 ) - i d ( A 2 ) = d ( A 1 ) * + ( i d ( A 2 ) ) * = d ( A 1 + i A 2 ) * = d ( A ) * .

Claim 6 d is an additive *-derivation on A.

Proof   To complete the proof, we only need to show that d is a derivation on A. Since d is additive. [A,B]*=AB-BA* and [iA,iB]*=-AB-BA* for all A,BA. It follows from Claim 3 that

d ( A B ) - d ( B A * ) = d ( [ A , B ] * ) = d ( [ 1 2 I     A ,   B ] * ) = [ d ( 1 2 I )     A ,   B ] * + [ 1 2 I     d ( A ) ,   B ] * + [ 1 2 I     A ,   d ( B ) ] *

    = [ 1 2 I     d ( A ) ,   B ] * + [ 1 2 I     A ,   d ( B ) ] * = d ( A ) B - B d ( A ) * + A d ( B ) - d ( B ) A * .

And

- d ( A B ) - d ( B A * ) = d ( [ i A , i B ] * ) = d ( [ 1 2 I     i A , i B ] * ) = [ d ( 1 2 I )     i A , i B ] * + [ 1 2 I     d ( i A ) , i B ] * + [ 1 2 I     i A , d ( i B ) ] *

     = [ 1 2 I     d ( i A ) , i B ] * + [ 1 2 I     i A ,   d ( i B ) ] * = - d ( A ) B - B d ( A ) * - A d ( B ) - d ( B ) A * .

Using the two equations above, we obtain d(AB)=d(A)B+Ad(B), and Claim 6 is proved.

It follows from Claims 4-6 that d is an additive *-derivation on A, which completes the proof of Theorem 1.

2 Nonlinear Mixed Jordan Triple *-Higher Derivation

Theorem 2   Let A be a *-algebra with the unit I, and let N be the set of non-negative integers. Assume that A contains a nontrivial projection P which satisfies for AA, XAP=0 implies X=0, and XA(I-P)=0 implies X=0.

Then every nonlinear mixed Jordan triple *-higher derivation D={dn}n on A which satisfies

d n ( [ A     B , C ] * ) = i + j + k = n [ d i ( A )     d j ( B ) ,   d k ( C ) ] *

for all A, B, CA and nN, is an additive *-higher derivation.

Proof   Let P1=P and P2=I-P. We write Ajk=PjAPk for j, k=1,2. Then A=j,k=12Ajk.

In the sequel Ajk indicates that AjkAjk. We set S={AA , A=A*}. We complete the proof by several Claims.

Claim 7 d n ( 0 ) = 0 for all nN.

Proof   It follows from Claim 1 that d1(0)=0. Now assume that dk(0)=0 for k<n. Then we compute

d n ( 0 ) = d n ( [ 0     0,0 ] * ) = m + l + j = n [ d m ( 0 )     d l ( 0 ) , d j ( 0 ) ] * = m + l + j = n j < n [ d m ( 0 )     d l ( 0 ) , d j ( 0 ) ] * + [ d 0 ( 0 )     d 0 ( 0 ) , d n ( 0 ) ] * = 0 .

Claim 8 For any nN, dn has the following properties: (a) For any λR, dn(λI)Z(A) and dn(λI)=dn(λI)*; (b) For any AS, dn(A)=dn(A*)=dn(A)*; (c) For any λC, dn(λI)Z(A).

Proof   It follows from Claim 2 and Claim 6 that d1(λI)=0 for λC and d1(A*)=d1(A)* for AA.

(a) For any λ R, we assume that dk(λI)=dk(λI)*Z(A) for k<n. Then

                               0 = d n ( [ I     λ I ,   I ] * ) = m + l + j = n [ d m ( I )     d l ( λ I ) ,   d j ( I ) ] *

                                  = [ d n ( I )     λ I , I ] * + [ I     d n ( λ I ) , I ] * + [ I     λ I ,   d n ( I ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( λ I ) ,   d j ( I ) ] *

                                  = [ d n ( I )     λ I ,   I ] * + [ I     d n ( λ I ) ,   I ] * + [ I     λ I ,   d n ( I ) ] * = 2 d n ( λ I ) - 2 d n ( λ I ) * .

From this we get dn(λI)=dn(λI)*. Then for all AA,

                               0 = d n ( [ λ I     λ I ,   A ] * ) = m + l + j = n [ d m ( λ I )     d l ( λ I ) ,   d j ( A ) ] *

                                  = [ d n ( λ I )     λ I ,   A ] * + [ λ I     d n ( λ I ) ,   A ] * + [ λ I     λ I ,   d n ( A ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( λ I )     d l ( λ I ) ,   d j ( A ) ] *

                                  = [ d n ( λ I )     λ I ,   A ] * + [ λ I     d n ( λ I ) ,   A ] * + [ λ I     λ I ,   d n ( A ) ] * = 4 λ d n ( λ I ) A - 4 λ A d n ( λ I ) * .

So we get dn(λI)A=Adn(λI) for all AA, which implies dn(λI)Z(A).

(b) For any AS, we assume that dk(A)=dk(A*)=dk(A)* for k<n. Then we can get from Claim 8(a) that

                               0 = d n ( [ I     A ,   I ] * ) = m + l + j = n [ d m ( I )     d l ( A ) ,   d j ( I ) ] *

                                  = [ d n ( I )     A ,   I ] * + [ I     d n ( A ) ,   I ] * + [ I     A ,   d n ( I ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( A ) ,   d j ( I ) ] *

                                  = [ d n ( I )     A ,   I ] * + [ I     d n ( A ) ,   I ] * + [ I     A ,   d n ( I ) ] * = 2 d n ( A ) - 2 d n ( A ) * .

(c) For any λC and AS, assume that dk(λI)Z(A) for k < n. Then we see from Claim 8(a) and 8(b) that

                                        0 = d n ( [ A     I ,   λ I ] * ) = m + l + j = n [ d m ( A )     d l ( I ) ,   d j ( λ I ) ] *

                                           = [ d n ( A )     I ,   λ I ] * + [ A     d n ( I ) ,   λ I ] * + [ A     I ,   d n ( λ I ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( A )     d l ( I ) ,   d j ( λ I ) ] *

                                           = [ d n ( A )     I ,   λ I ] * + [ A     d n ( I ) ,   λ I ] * + [ A     I ,   d n ( λ I ) ] * = 2 A d n ( λ I ) - 2 d n ( λ I ) A .

Thus Adn(λI)=dn(λI)A for all AS. This implies that dn(λI)Z(A).

Claim 9 For any AA and nN+, dn(12I)=dn(12iI)=0, dn(iA)=idn(A).

Proof   It follows from Claim 3 that d1(12I)=d1(12iI)=0, d1(iA)=id1(A). Now assume dk(12I)=dk(12iI)=0, dk(iA)=idk(A) for k<n. Then by Claim 8,

d n ( - 1 2 I ) = d n ( [ 1 2 I     1 2 i I ,   1 2 i I ] * )   = m + l + j = n [ d m ( 1 2 I )     d l ( 1 2 i I ) ,   d j ( 1 2 i I ) ] *

                      = [ d n ( 1 2 I ) 1 2 i I ,   1 2 i I ] * + [ 1 2 I   d n ( 1 2 i I ) ,   1 2 i I ] * + [ 1 2 I   1 2 i I ,   d n ( 1 2 i I ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( 1 2 I ) d l ( 1 2 i I ) ,   d j ( 1 2 i I ) ] *

                     = [ d n ( 1 2 I ) 1 2 i I ,   1 2 i I ] * + [ 1 2 I   d n ( 1 2 i I ) ,   1 2 i I ] * + [ 1 2 I   1 2 i I ,   d n ( 1 2 i I ) ] *

                     = - d n ( 1 2 I ) + 1 2 i ( d n ( 1 2 i I ) - d n ( 1 2 i I ) * ) + i d n ( 1 2 i I ) .

Since dn(12I),dn(-12I),i(dn(12iI)-dn(12iI)*) are self-adjoint, idn(12iI) is also self-adjoint. Hence

d n ( - 1 2 I ) = - d n ( 1 2 I ) + 2 i d n ( 1 2 i I ) . (8)

Similarly, we can obtain from the fact that -12I=[12I  (-12iI), -12iI]*, then

d n ( - 1 2 i I ) = - d n ( - 1 2 i I ) * (9)

and

d n ( - 1 2 I ) = - d n ( 1 2 I ) - 2 i d n ( - 1 2 i I ) . (10)

Now by (8) and (10) we have

d n ( - 1 2 i I ) = - d n ( 1 2 i I ) . (11)

Then we compute

         d n ( 1 2 i I ) = d n ( [ 1 2 I     ( - 1 2 i I ) , - 1 2 I ] * ) = m + l + j = n [ d m ( 1 2 I )     d l ( - 1 2 i I ) , d j ( - 1 2 I ) ] *

                          = [ d n ( 1 2 I ) ( - 1 2 i I ) , - 1 2 I ] * + [ 1 2 I     d n ( - 1 2 i I ) , - 1 2 I ] * + [ 1 2 I   ( - 1 2 i I ) , d n ( - 1 2 I ) ] *

                               + m + l + j = n 0 m , l , j n - 1 [ d m ( 1 2 I )     d l ( - 1 2 i I ) , d j ( - 1 2 I ) ] *

                         = [ d n ( 1 2 I ) ( - 1 2 i I ) ,   - 1 2 I ] * + [ 1 2 I     d n ( - 1 2 i I ) , - 1 2 I ] * + [ 1 2 I   ( - 1 2 i I ) , d n ( - 1 2 I ) ] *

                         = i d n ( 1 2 I ) - 1 2 I ( d n ( - 1 2 i I ) - d n ( - 1 2 i I ) * ) - i d n ( - 1 2 I ) .

By using (9) and (11) we get

d n ( 1 2 I ) = d n ( - 1 2 I ) . (12)

Now compute

               d n ( - 1 2 i I ) = d n ( [ - 1 2 I   ( - 1 2 i I ) , - 1 2 I ] * ) = m + l + j = n [ d m ( - 1 2 I )     d l ( - 1 2 i I ) , d j ( - 1 2 I ) ] *

                                  = [ d n ( - 1 2 I )   ( - 1 2 i I ) , - 1 2 I ] * + [ - 1 2 I     d n ( - 1 2 i I ) , - 1 2 I ] *

                                       + m + l + j = n 0 m , l , j n - 1 [ d m ( - 1 2 I )     d l ( - 1 2 i I ) ,   d j ( - 1 2 I ) ] * + [ - 1 2 I   ( - 1 2 i I ) ,   d n ( - 1 2 I ) ] *

                                  = [ d n ( - 1 2 I ) ( - 1 2 i I ) , - 1 2 I ] * + [ - 1 2 I     d n ( - 1 2 i I ) ,   - 1 2 I ] * + [ - 1 2 I   ( - 1 2 i I ) ,   d n ( - 1 2 I ) ] *

                                  = 2 i d n ( - 1 2 I ) + 1 2 ( d n ( - 1 2 i I ) - d n ( - 1 2 i I ) * ) .

By using (9) we get dn(-12I)=0, then by equations (8), (11) and (12), we have dn(-12I)=dn(12I)=dn(-12iI)=dn(12iI)=0.

For any AA we have

        d n ( i A ) = d n ( [ 1 2 I     1 2 i I , A ] * ) = m + l + j = n [ d m ( 1 2 I )     d l ( 1 2 i I ) ,   d j ( A ) ] *

                    = [ d n ( 1 2 I )     1 2 i I ,   A ] * + [ 1 2 I     d n ( 1 2 i I ) ,   A ] * + [ 1 2 I     1 2 i I ,   d n ( A ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( 1 2 I )     d l ( 1 2 i I ) ,   d j ( A ) ] *

                    = [ 1 2 I     1 2 i I ,   d n ( A ) ] * = i d n ( A ) .

Claim 10 For any nN, dn is additive.

Proof   It follows from Claim 4 that d1 is additive. Now assume dk is additive for k<n. Then we complete the proof of Claim 10 in several steps.

Step 1   For any nN, A12A12 and B21A21, we have dn(A12+B21)=dn(A12)+dn(B21).

Set T=dn(A12+B21)-dn(A12)-dn(B21). We only need to show T=0.

Since [I  (i(P2-P1)), A12]*=[I  (i(P2-P1)), B21]*=0, it follows that

                            0 = d n ( [ I     ( i ( P 2 - P 1 ) ) ,   A 12 + B 21 ] * )

                               = [ d n ( I )     ( i ( P 2 - P 1 ) ) ,   A 12 + B 21 ] * + [ I     d n ( i ( P 2 - P 1 ) ) ,   A 12 + B 21 ] * + [ I     ( i ( P 2 - P 1 ) ) ,   d n ( A 12 + B 21 ) ] *

                                   + m + l + j = n 0 m ,   l ,   j n - 1 [ d m ( I )     d l ( i ( P 2 - P 1 ) ) ,   d j ( A 12 + B 21 ) ] * .

On the other hand,

                     0 = d n ( [ I     ( i ( P 2 - P 1 ) ) ,   A 12 ] * ) + d n ( [ I     ( i ( P 2 - P 1 ) ) ,   B 21 ] * )

                        = [ d n ( I )     ( i ( P 2 - P 1 ) ) ,   A 12 + B 21 ] * + [ I     d n ( i ( P 2 - P 1 ) ) ,   A 12 + B 21 ] * + [ I     ( i ( P 2 - P 1 ) ) ,   d n ( A 12 ) + d n ( B 21 ) ] *

                             + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( i ( P 2 - P 1 ) ) ,   d j ( A 12 + B 21 ) ] * .

From two equations above, we get [I  (i(P2-P1)), T]*=0. So T11=T22=0.

Since [I  A12,P1]*=0, it follows that

                 d n ( [ I     ( A 12 + B 21 ) , P 1 ] * ) = [ d n ( I )     ( A 12 + B 21 ) ,   P 1 ] * + [ I     d n ( A 12 + B 21 ) ,   P 1 ] * + [ I     ( A 12 + B 21 ) ,   d n ( P 1 ) ] *

                                                                   + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( A 12 + B 21 ) , d j ( P 1 ) ] * .

On the other hand,

         d n ( [ I     ( A 12 + B 21 ) ,   P 1 ] * ) = d n ( [ I     A 12 ,   P 1 ] * ) + d n ( [ I     B 21 ,   P 1 ] * )

                                                        = [ d n ( I )     ( A 12 + B 21 ) ,   P 1 ] * + [ I     ( d n ( A 12 ) + d n ( B 21 ) ) ,   P 1 ] * + [ I     ( A 12 + B 21 ) ,   d n ( P 1 ) ] *                                                              + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( A 12 ) + d l ( B 21 ) ,   d j ( P 1 ) ] *

                                                       = [ d n ( I )     ( A 12 + B 21 ) ,   P 1 ] * + [ I     ( d n ( A 12 ) + d n ( B 21 ) ) ,   P 1 ] * + [ I     ( A 12 + B 21 ) ,   d n ( P 1 ) ] *

                                                            + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( A 12 + B 21 ) ,   d j ( P 1 ) ] * .

Comparing two equations above, we can get [I  T, P1]*=0. So T21=0. Similarly, we can show T12=0 by using [I  B21, P2]*=0, then the step is proved.

Step 2   For any nN, A11A11, B12A12, C21A21 and D22A22, we have dn(A11+B12+C21)=dn(A11)+dn(B12)+dn(C21) and dn(B12+C21+D22)=dn(B12)+dn(C21)+dn(D22).

Let T=dn(A11+B12+C21)-dn(A11)-dn(B12)-dn(C21). It follows from Step 1 that

                         d n ( [ I     ( i P 2 ) , A 11 + B 12 + C 21 ] * )

                     = [ d n ( I )     ( i P 2 ) , A 11 + B 12 + C 21 ] * + [ I     d n ( i P 2 ) , A 11 + B 12 + C 21 ] * + [ I     ( i P 2 ) , d n ( A 11 + B 12 + C 21 ) ] *                           + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( i P 2 ) , d j ( A 11 + B 12 + C 21 ) ] *

                     = [ d n ( I )     ( i P 2 ) , A 11 + B 12 + C 21 ] * + [ I     d n ( i P 2 ) , A 11 + B 12 + C 21 ] * + [ I     ( i P 2 ) , d n ( A 11 + B 12 + C 21 ) ] *                          + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( i P 2 ) , d j ( A 11 ) + d j ( B 12 ) + d j ( C 21 ) ] * .

On the other hand,

  d n ( [ I     ( i P 2 ) ,   A 11 + B 12 + C 21 ] * ) = d n ( [ I     ( i P 2 ) ,   A 11 ] * ) + d n ( [ I     ( i P 2 ) ,   B 12 ] * ) + d n ( [ I     ( i P 2 ) ,   C 21 ] * )

                                    = [ d n ( I )     ( i P 2 ) , A 11 + B 12 + C 21 ] * + [ I     d n ( i P 2 ) , A 11 + B 12 + C 21 ] *

                                         + [ I     ( i P 2 ) , d n ( A 11 ) + d n ( B 12 ) + d n ( C 21 ) ] * + m + l + j = n 0 m ,   l ,   j n - 1 [ d m ( I )     d l ( i P 2 ) , d j ( A 11 ) + d j ( B 12 ) + d j ( C 21 ) ] * .

From these equations, we get [I  (iP2),T]*=0. So T=T11.

Since [I  (i(P2-P1)),B12]*=[I  (i(P2-P1)),C21]*=0, it follows that

                                d n ( [ I     ( i ( P 2 - P 1 ) ) ,   A 11 + B 12 + C 21 ] * )

                            = [ d n ( I )     ( i ( P 2 - P 1 ) ) ,   A 11 + B 12 + C 21 ] * + [ I     d n ( i ( P 2 - P 1 ) ) ,   A 11 + B 12 + C 21 ] *

                                 + [ I     ( i ( P 2 - P 1 ) ) ,   d n ( A 11 + B 12 + C 21 ) ] * + m + l + j = n 0 m ,   l ,   j n - 1 [ d m ( I )     d l ( i ( P 2 - P 1 ) ) ,   d j ( A 11 + B 12 + C 21 ) ] *

                            = [ d n ( I )     ( i ( P 2 - P 1 ) ) ,   A 11 + B 12 + C 21 ] * + [ I     d n ( i ( P 2 - P 1 ) ) ,   A 11 + B 12 + C 21 ] *

                                + [ I     ( i ( P 2 - P 1 ) ) ,   d n ( A 11 + B 12 + C 21 ) ] * + m + l + j = n 0 m ,   l ,   j n - 1 [ d m ( I )     d l ( i ( P 2 - P 1 ) ) , d j ( A 11 ) + d j ( B 12 ) + d j ( C 21 ) ] * .

On the other hand,

                    d n ( [ I     ( i ( P 2 - P 1 ) ) ,   A 11 + B 12 + C 21 ] * )

                = d n ( [ I     ( i ( P 2 - P 1 ) ) ,   A 11 ] * ) + d n ( [ I     ( i ( P 2 - P 1 ) ) ,   B 12 ] * + d n ( [ I     ( i ( P 2 - P 1 ) ) ,   C 21 ] * )

                = [ d n ( I )     ( i ( P 2 - P 1 ) ) ,   A 11 + B 12 + C 21 ] * + [ I     d n ( i ( P 2 - P 1 ) ) ,   A 11 + B 12 + C 21 ] *

                     + [ I     ( i ( P 2 - P 1 ) ) , d n ( A 11 ) + d n ( B 12 ) + d n ( C 21 ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( i ( P 2 - P 1 ) ) , d j ( A 11 ) + d j ( B 12 ) + d j ( C 21 ) ] * .

We can get [I  (i(P2-P1)), T]*=0 from the equations above. So T11=0 and T=0. Similarly, dn(B12+C21+D22)=dn(B12)+dn(C21)+dn(D22).

Step 3   For any nN, A11A11, B12A12, C21A21 and D22A22, we have

d n ( A 11 + B 12 + C 21 + D 22 ) = d n ( A 11 ) + d n ( B 12 ) + d n ( C 21 ) + d n ( D 22 ) .

Let T=dn(A11+B12+C21+D22)-dn(A11)-dn(B12)-dn(C21)-dn(D22). It follows from Step 2 that

          d n ( [ I     ( i P 2 ) ,   A 11 + B 12 + C 21 + D 22 ] * )

                   = [ d n ( I )     ( i P 2 ) ,   A 11 + B 12 + C 21 + D 22 ] * + [ I     d n ( i P 2 ) ,   A 11 + B 12 + C 21 + D 22 ] *

                        + [ I     ( i P 2 ) ,   d n ( A 11 + B 12 + C 21 + D 22 ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( i P 2 ) ,   d j ( A 11 + B 12 + C 21 + D 22 ) ] *

                   = [ d n ( I )     ( i P 2 ) ,   A 11 + B 12 + C 21 + D 22 ] * + [ I     d n ( i P 2 ) ,   A 11 + B 12 + C 21 + D 22 ] *

                        + [ I     ( i P 2 ) ,   d n ( A 11 + B 12 + C 21 + D 22 ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( i P 2 ) ,   d j ( A 11 ) + d j ( B 12 ) + d j ( C 21 ) + d j ( D 22 ) ] * .

On the other hand,

     d n ( [ I     ( i P 2 ) , A 11 + B 12 + C 21 + D 22 ] * )

= d n ( [ I     ( i P 2 ) , A 11 ] * ) + d n ( [ I ( i P 2 ) , B 12 ] * ) + d n ( [ I ( i P 2 ) , C 21 ] * ) + d n ( [ I     ( i P 2 ) , D 22 ] * )

= [ d n ( I )     ( i P 2 ) , A 11 + B 12 + C 21 + D 22 ] * + [ I     d n ( i P 2 ) , A 11 + B 12 + C 21 + D 22 ] *

     + [ I     ( i P 2 ) , d n ( A 11 ) + d n ( B 12 ) + d n ( C 21 ) + d n ( D 22 ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( i P 2 ) , d j ( A 11 ) + d j ( B 12 ) + d j ( C 21 ) + d j ( D 22 ) ] * .

Comparing the two equations above, we can get [I(iP2), T]*=0. So T12=T21=T22=0. Similarly, we can show that T11=0 from [I(iP1),D22]*=0, then the Step 3 is proved.

Step 4   For any nN, Ast,BstAst,1st2, we have dn(Ast+Bst)=dn(Ast)+dn(Bst).

Since [12I  (Ps+Ast),Pt+Bst]*=Ast+Bst-Ast*-BstAst*, we can get

d n ( A s t + B s t ) + d n ( - A s t * ) + d n ( - B s t A s t * ) = d n ( [ 1 2 I     ( P s + A s t ) ,   P t + B s t ] * )

                                            = [ d n ( 1 2 I )     ( P s + A s t ) ,   P t + B s t ] * + [ 1 2 I     d n ( P s + A s t ) ,   P t + B s t ] * + [ 1 2 I     ( P s + A s t ) ,   d n ( P t + B s t ) ] *                                                  + m + l + j = n 0 m , l , j n - 1 [ d m ( 1 2 I )     d l ( P s + A s t ) ,   d j ( P t + A s t ) ] *

                                            = d n ( [ 1 2 I     P s , P t ] * ) + d n ( [ 1 2 I     A s t , P t ] * ) + d n ( [ 1 2 I     P s , B s t ] * ) + d n ( [ 1 2 I     A s t , B s t ] * )

                                            = d n ( A s t ) + d n ( - A s t * ) + d n ( B s t ) + d n ( - B s t A s t * ) .

Step 5   For any nN, Ass,BssAss,s=1,2, we have dn(Ass+Bss)=dn(Ass)+dn(Bss).

Let T=dn(Ass+Bss)-dn(Ass)-dn(Bss). For 1st2, it follows that

             [ d n ( I )     P t ,   A s s + B s s ] * + [ I     d n ( P t ) ,   A s s + B s s ] * + [ I     P t ,   d n ( A s s + B s s ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( P t ) ,   d j ( A s s + B s s ) ] *

         = d n ( [ I     P t ,   A s s + B s s ] * ) = d n ( [ I     P t ,   A s s ] * ) + d n ( [ I     P t ,   B s s ] * )

         = [ d n ( I )     P t , A s s + B s s ] * + [ I     d n ( P t ) , A s s + B s s ] * + [ I     P t , d n ( A s s ) + d n ( B s s ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( P t ) , d j ( A s s + B s s ) ] * .

From the equation above, we can get T=Tss.

For all CstAst,st, it follows from Step 4 that

[ d n ( I )     ( A s s + B s s ) , C s t ] * + [ I     d n ( A s s + B s s ) , C s t ] * + [ I     ( A s s + B s s ) , d n ( C s t ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I )     d l ( A s s + B s s ) , d j ( C s t ) ] *  

= d n ( [ I     ( A s s + B s s ) , C s t ] * ) = d n ( [ I     A s s , C s t ] * ) + d n ( [ I     B s s , C s t ] * )

= [ d n ( I )     ( A s s + B s s ) , C s t ] * + [ I     d n ( A s s ) + d n ( B s s ) , C s t ] * + [ I     ( A s s + B s s ) , d n ( C s t ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( I ) d l ( A s s + B s s ) , d j ( C s t ) ] * .

Hence [I  Tss,Cst]=0 for all CstAst, then TssCPt=0 for all CA. So T=Tss=0, then the step is proved.

Now, it follows from Steps 3-5 that dn is additive, and Claim 10 is proved.

Claim 11 For any AA and nN, dn(A*)=dn(A)*.

Proof   For any nN, AA, where A=A1+iA2, A1, A2S, it follows from Claims 8-10 that

d n ( A * ) = d n ( A 1 - i A 2 ) = d n ( A 1 ) - i d n ( A 2 ) = d n ( A 1 ) * + ( i d n ( A 2 ) ) * = d n ( A 1 + i A 2 ) * = d n ( A ) * .

Claim 12 For any nN, dn is an additive *-higher derivation on A.

Proof   To complete the proof, we only need to show that dn is a higher derivation on A. Since dn is additive. [A,B]*=AB-BA* and [iA, iB]*=-AB-BA* for all A,BA. It follows from Claim 9 that

        d n ( A B ) - d n ( B A * ) = d n ( [ A , B ] * ) = d n ( [ 1 2 I     A , B ] * )

                                         = [ d n ( 1 2 I )     A , B ] * + [ 1 2 I d n ( A ) , B ] * + [ 1 2 I     A , d n ( B ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( 1 2 I )     d l ( A ) , d j ( B ) ] *

                                         = [ 1 2 I     d n ( A ) , B ] * + [ 1 2 I     A , d n ( B ) ] * + l + j = n 0 l , j n - 1 [ d l ( A ) , d j ( B ) ] *

                                         = d n ( A ) B - B d n ( A ) * + A d n ( B ) - d n ( B ) A * + l + j = n 0 l , j n - 1 d l ( A ) d j ( B ) - d j ( B ) d l ( A ) * .

And

- d n ( A B ) - d n ( B A * ) = d n ( [ i A , i B ] * ) = d n ( [ 1 2 I     i A , i B ] * )

                                     = [ d n ( 1 2 I )     i A , i B ] * + [ 1 2 I     d n ( i A ) , i B ] * + [ 1 2 I     i A , d n ( i B ) ] * + m + l + j = n 0 m , l , j n - 1 [ d m ( 1 2 I )     d l ( i A ) , d j ( i B ) ] *

                                     = [ 1 2 I     d n ( i A ) , i B ] * + [ 1 2 I     i A , d n ( i B ) ] * + l + j = n 0 l , j n - 1 [ d l ( i A ) , d j ( i B ) ] *

                                     = - d n ( A ) B - B d n ( A ) * - A d n ( B ) - d n ( B ) A * + l + j = n 0 l , j n - 1 - d l ( A ) d j ( B ) - d j ( B ) d l ( A ) * .

Using the two equations above, we obtain dn(AB)=dn(A)B+Adn(B)+l+j=n0l,jn-1dl(A)dj(B)=l+j=ndl(A)dj(B), then Claim 12 is proved.

It follows from Claim 10-12 that D={dn}nN is an additive *-higher derivation on A, which completes the proof of Theorem 2. Obviously, prime ∗-algebras satisfy (1) and (2), we have the following corollary.

Corollary 1   Let A be a prime *-algebra with unit I and P be a nontrivial projection in A. Then any nonlinear mixed Jordan triple *-higher derivation D={dn}nN,dn: AA is an additive *-higher derivation.

A von Neumann algebra is a weekly closed, self-adjoint algebra of operators on a Hilbert space containing the identity operator I. It is shown in Ref. [3] and Ref. [14] that if a von Neumann algebra has no central summands of type I1, then satisfies (1) and (2). Now we have following corollary.

Corollary 2   Let be a von Neumann algebra with no central summands of type I1. Then any nonlinear mixed Jordan triple *-higher derivation D={dn}nN,dn: AA is an additive *-higher derivation.

References

  1. Bai Z F, Du S P. Maps preserving products XY-YXFormula on von Neumann algebras[J]. Journal of Mathematical Analysis and Applications, 2012, 386(1): 103-109. [Google Scholar]
  2. Cui J L, Li C K. Maps preserving product XY-YXFormula on factor von Neumann algebras[J]. Linear Algebra and Its Applications, 2009, 431(5/6/7): 833-842. [Google Scholar]
  3. Dai L Q, Lu F Y. Nonlinear maps preserving Jordan Formula -products[J]. Journal of Mathematical Analysis and Applications, 2014, 409(1): 180-188. [Google Scholar]
  4. Huo D H, Zheng B D, Liu H Y. Nonlinear maps preserving Jordan triple η-Formula -products[J]. Journal of Mathematical Analysis and Applications, 2015, 430(2): 830-844. [Google Scholar]
  5. Li C J, Chen Q Y, Wang T. Nonlinear maps preserving the Jordan triple Formula -product on factor von Neumann algebras[J]. Chinese Annals of Mathematics, Series B, 2018, 39(4): 633-642. [Google Scholar]
  6. Li C J, Lu F Y, Fang X C. Nonlinear mappings preserving product XY+YXFormula on factor von Neumann algebras[J]. Linear Algebra and Its Applications, 2013, 438(5): 2339-2345. [Google Scholar]
  7. Li C J, Lu F Y. Nonlinear maps preserving the Jordan triple 1-Formula -product on von Neumann algebras[J]. Complex Analysis and Operator Theory, 2017, 11(1): 109-117. [Google Scholar]
  8. Li C J, Lu F Y, Wang T. Nonlinear maps preserving the Jordan triple Formula -product on von Neumann algebras[J]. Annals of Functional Analysis, 2016, 7(3): 496-507. [Google Scholar]
  9. Zhao F F, Li C J. Nonlinear maps preserving the Jordan triple Formula -product between factors[J]. Indagationes Mathematicae, 2018, 29(2): 619-627. [Google Scholar]
  10. Yu W Y, Zhang J H. Nonlinear Formula -Lie derivations on factor von Neumann algebras[J]. Linear Algebra and Its Applications, 2012, 437(8): 1979-1991. [Google Scholar]
  11. Jing W. Nonlinear Formula -Lie derivations of standard operator algebras[J]. Quaestiones Mathematicae, 2016, 39(8): 1037-1046. [Google Scholar]
  12. Taghavi A, Rohi H, Darvish V. Non-linear Formula -Jordan derivations on von Neumann algebras[J]. Linear and Multilinear Algebra, 2016, 64(3): 426-439. [Google Scholar]
  13. Zhang F J. Nonlinear skew Jordan derivable maps on factor von Neumann algebras[J]. Linear and Multilinear Algebra, 2016, 64(10): 2090-2103. [Google Scholar]
  14. Li C J, Lu F Y, Fang X C. Non-linear ξ-Jordan Formula -derivations on von Neumann algebras[J]. Linear and Multilinear Algebra, 2014, 62(4): 466-473. [Google Scholar]
  15. Li C J, Zhao F F, Chen Q Y. Nonlinear skew Lie triple derivations between factors[J]. Acta Mathematica Sinica, English Series, 2016, 32(7): 821-830. [Google Scholar]
  16. Fu F Y, An R L. Equivalent characterization of Formula -derivations on von Neumann algebras[J]. Linear and Multilinear Algebra, 2019, 67(3): 527-541. [Google Scholar]
  17. Zhao F F, Li C J. Nonlinear Formula -Jordan triple derivations on von Neumann algebras[J]. Mathematica Slovaca, 2018, 68(1): 163-170. [Google Scholar]
  18. Lin W H. Nonlinear Formula -Lie-type derivations on von Neumann algebras[J]. Acta Mathematica Hungarica, 2018, 156(1): 112-131. [Google Scholar]
  19. Lin W. Nonlinear Formula -Lie-type derivations on standard operator algebras[J]. Acta Mathematica Hungarica, 2018, 154(2): 480-500. [Google Scholar]
  20. Yang Z J, Zhang J H. Nonlinear maps preserving mixed Lie triple products on factor von Neumann algebras[J]. Annals of Functional Analysis, 2019, 10(3): 325-336. [Google Scholar]
  21. Yang Z J, Zhang J H. Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras[J]. Linear and Multilinear Algebra, 2020, 68(2): 377-390. [Google Scholar]
  22. Zhou Y, Yang Z J, Zhang J H. Nonlinear mixed Lie triple derivations on prime Formula -algebras[J]. Communications in Algebra, 2019, 47(11): 4791-4796. [Google Scholar]
  23. Li C, Zhang D. Nonlinear mixed Jordan triple Formula -derivations on Formula -algebras[J]. Siberian Mathematical Journal, 2022, 63(4): 735-742 [Google Scholar]
  24. Ferrero M, Haetinger C. Higher derivations of semiprime rings[J]. Communications in Algebra, 2002, 30(5): 2321-2333. [Google Scholar]
  25. Nowicki A. Inner derivation of higher orders[J]. Tsukuba Journal of Mathematics, 1984, 8(2): 219-225. [Google Scholar]
  26. Wei F, Xiao Z K. Higher derivations of triangular algebras and its generalizations[J]. Linear Algebra and Its Applications, 2011, 435(5): 1034-1054. [Google Scholar]
  27. Xiao Z K, Wei F. Nonlinear Lie higher derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2012, 60(8): 979-994. [Google Scholar]
  28. Qi X F, Hou J C. Lie higher derivations on nest algebras[J]. Communications in Mathematical Research, 2010, 26(2): 131-143. [Google Scholar]
  29. Zhang F J, Qi X F, Zhang J H. Nonlinear Formula -Lie higher derivations on factor von Neumann algebras[J]. Bulletin of the Iranian Mathematical Society, 2016, 42(3): 659-678. [MathSciNet] [Google Scholar]
  30. Ashraf M, Ahmad Wani B, Wei F. Multiplicative Formula -Lie triple higher derivations of standard operator algebras[J]. Quaestiones Mathematicae, 2019, 42(7): 857-884. [Google Scholar]
  31. Ahmad Wani B, Ashraf M, Lin W H. Multiplicative Formula -Jordan type higher derivations on von Neumann algebras[J]. Quaestiones Mathematicae, 2020, 43(12): 1689-1711. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.