Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 26, Number 6, December 2021
Page(s) 453 - 458
DOI https://doi.org/10.1051/wujns/2021266453
Published online 17 December 2021
  1. Carlet C, Mesnager S. Four decades of research on bent functions [J]. Designs, Codes and Cryptography, 2016, 78(1): 5-50. [Google Scholar]
  2. Mesnager S. On Semi-Bent Functions and Related Plateaued Functions over the Galois Field [M]. Berlin: Springer-Verlag, 2014. [Google Scholar]
  3. Tu Z B, Zheng D B, Zeng X Y, et al. Boolean functions with two distinct Walsh coefficients [J]. Applicable Algebra in Engineering Communication and Computing, 2011, 22(5-6): 359-366. [Google Scholar]
  4. Rothaus O S. On “bent” functions [J]. Journal of Combinatorial Theory, 1976, 20(3): 300-305. [Google Scholar]
  5. Frances M, Litman A. On covering problems of codes [J]. Theory of Computing Systems, 1997, 30(2): 113-119. [CrossRef] [MathSciNet] [Google Scholar]
  6. Calderbank R, Kantor W M. The geometry of two-weight codes [J]. Bulletin of the London Mathematical Society, 1986, 18(2): 97-122. [Google Scholar]
  7. Carlet C. Boolean functions for cryptography and error-correcting codes [J]. Encyclopedia of Mathematics and Its Applications, 2016, 78(1): 5-50. [Google Scholar]
  8. Olsen J, Scholtz R, Welch L. Bent-function sequences [J]. IEEE Transactions on Information Theory, 1982, 28(6): 858-864. [CrossRef] [MathSciNet] [Google Scholar]
  9. Carlet C. Boolean and vectorial plateaued functions and APN functions [J]. IEEE Transactions on Information Theory, 2015, 61(11): 6272-6289. [CrossRef] [MathSciNet] [Google Scholar]
  10. Sun Z Q, Hu L. Boolean functions with four-valued Walsh spectra [J]. Journal of Systems Science and Complexity, 2015, 28(3): 743-754. [CrossRef] [MathSciNet] [Google Scholar]
  11. Jin W G, Du X N, Sun Y Z, et al. Boolean functions with six-valued Walsh spectra and their application [J]. Cryptography and Communications, 2021, 13(5): 393-405. [Google Scholar]
  12. Xu G K, Cao X W, Xu S D. Several new classes of Boolean functions with few Walsh transform values [J]. Applicable Algebra in Engineering Communication and Computing, 2017, 28(2): 155-176. [Google Scholar]
  13. Tang C M, Zhou Z C, Qi Y F, et al. Generic construction of bent functions and bent idempotents with any possible algebraic degrees [J]. IEEE Transactions on Information Theory, 2017, 63(10): 6149-6157. [CrossRef] [MathSciNet] [Google Scholar]
  14. Mesnager S. Several new infinite families of bent functions and their duals [J]. IEEE Transactions on Information Theory, 2014, 60(7): 4397-4407. [CrossRef] [MathSciNet] [Google Scholar]
  15. Pang T T, Li N, Zhang L, et al. Several new classes of (balanced) Boolean functions with few Walsh transform values [J]. Advances in Mathematics of Communications, 2021, 15(4): 757-775. [Google Scholar]
  16. Wu G F, Li N, Zhang Y Q, et al. Several classes of negabent functions over finite fields [J]. Science China. Information Sciences, 2018, 61(3): 1-3. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.