Open Access
Wuhan Univ. J. Nat. Sci.
Volume 26, Number 6, December 2021
Page(s) 459 - 463
Published online 17 December 2021
  1. Marsaglia G, Styan G. Equalities and inequalities for ranks of matrices [J]. Linear Multilinear Algebra , 1974, 2 : 269-292. [Google Scholar]
  2. Meyer Jr C. Generalized inverses and ranks of block matrices [J]. SIAM J Appl Math , 1973, 25 :597-602. [Google Scholar]
  3. Tian Y G. Upper and lower bounds for ranks of matrix expressions using generalized inverses [J]. Linear Algebra Appl , 2002, 355 (1-3): 187-214. [Google Scholar]
  4. Tian Y G. On properties of BLUEs under general linear regression models [J]. J Stat Plan Inf , 2013, 143 (4): 771-782. [CrossRef] [Google Scholar]
  5. Tian Y G. Extremal ranks of a quadratic matrix expression with applications [J]. Linear Multilinear Algebra , 2011, 59 (6): 627-644. [Google Scholar]
  6. Xiong Z P, Qin Y Y. On the inverse of a special Schur complement [J]. Appl Math Comput , 2012, 218 (14): 7679-7684. [Google Scholar]
  7. Wang Q W, Yu S W, Zhang Q. The real solutions to a system of quaternion matrix equations with applications [J]. Comm Algebra , 2009, 37 (1): 2060-2079. [CrossRef] [MathSciNet] [Google Scholar]
  8. Wang Q W, Zhang X, He Z H. On the Hermitian structures of the solution to a pair of matrix equations [J]. Linear Multilinear Algebra , 2012, 61 (1): 73-90. [Google Scholar]
  9. Rashedi S, Ebadi G, Biswas A. The maximal and minimal ranks of a quaternion matrix expression with applications [J]. J Egypt Math Soc , 2013, 21 (3): 175-183. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  10. Drinfeld V. On some unsolved problems in quantum group theory [J]. Lecture Notes in Mathematics , 1992, 1510 : 1-8. [Google Scholar]
  11. Etingof P, Schedler T, Soloviev A. Set-theoretical solutions of the quantum Yang-Baxter equation [J]. Duke Math J , 1999, 100 : 169-178. [CrossRef] [MathSciNet] [Google Scholar]
  12. Gateva-Ivanova T, Bergh M. Semi-groups of I-type [J]. J Algebra , 1998, 206 : 97-112. [CrossRef] [MathSciNet] [Google Scholar]
  13. Felix F. Nonlinear Equations, Quantum Groups And Duality Theorems: A Primer on the Yang-Baxter Equation [D]. Buffalo: The State University of New York at Buffalo, 2001. [Google Scholar]
  14. Yang C N, Ge M L. Braid Group, Knot Theory, and Statistical Mechanics [M]. Singapore: World Scientific, 1989. [Google Scholar]
  15. Ding J, Rhee N. Spectral solutions of the Yang-Baxter matrix equation [J]. J Math Anal Appl , 2013, 402 : 567-573. [CrossRef] [MathSciNet] [Google Scholar]
  16. Ding J, Rhee N. A nontrivial solution to a stochastic matrix equation [J]. East Asian J Appl Math , 2012, 2 : 277-284. [CrossRef] [MathSciNet] [Google Scholar]
  17. Cibotarica A, Ding J, Kolibal J, et al . Solutions of the Yang-Baxter matrix equation for an idempotent [J]. Numer Algebra Control Opt , 2013, 3 (2): 347-352. [Google Scholar]
  18. Ben-Israel A, Greville T. Generalized Inverses: Theory and Applications [M]. New York: R.E. Krieger Publishing Company, 1980. [Google Scholar]
  19. Tian Y G. Solving optimization problems on ranks and inertias of some constrained nonlinear matrix functions via an algebraic linearization method [J]. Nonlinear Anal , 2012, 75 (2): 717-734. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.