Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 26, Number 6, December 2021
|
|
---|---|---|
Page(s) | 464 - 472 | |
DOI | https://doi.org/10.1051/wujns/2021266464 | |
Published online | 17 December 2021 |
- Amoualian H, Clausel M, Gaussier E, et al. Streaming-LDA: A copula-based approach to modeling topic dependencies in document streams [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 695-704. [CrossRef] [Google Scholar]
- Lin Y. Topic evolution of innovation academic researches [J]. Journal of Small Business Strategy, 2016, 26(1): 25-36. [Google Scholar]
- Wu Y, Jin X, Xue Y. Evaluation of research topic evolution in psychiatry using co-word analysis [J]. Medicine, 2017, 96(25): e7349. [CrossRef] [PubMed] [Google Scholar]
- Wu Q, Zhang C, Hong Q, et al. Topic evolution based on LDA and HMM and its application in stem cell research [J]. Journal of Information Science, 2014, 40(5): 611-620. [CrossRef] [Google Scholar]
- Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation [J]. The Journal of Machine Learning Research, 2003, 3: 993-1022. [Google Scholar]
- Alsumait L, Barbará D, Domeniconi C. On-Line LDA: Adaptive topic models for mining text streams with applications to topic detection and tracking [C]// Proceedings of the 8th IEEE International Conference on Data Mining. Washington D C: IEEE, 2008: 3-12. [Google Scholar]
- Lau J H, Collier N, Baldwin T. On-line trend analysis with topic models: #Twitter trends detection topic model online [C]// Proceedings of COLING 2012. 2012: 1519-1534. [Google Scholar]
- Kalyanam J, Mantrach A, Saeztrumper D, et al.Leveraging social context for modeling topic evolution [C]// Knowledge Discovery and Data Mining. New York: ACM, 2015: 517-526. [Google Scholar]
- Hu Y, Xu X F, Li L, et al. Analyzing topic-sentiment and topic evolution over time from social media [C]// International Conference on Knowledge Science, Engineering and Management. Berlin: Springer-Verlag, 2016: 97-109. [Google Scholar]
- Chem X S, Gao Y, Jiang H, et al. OLDA-based model for hot topic evolution and tracking [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44: 130-136. [Google Scholar]
- Pei K F, Chen Y Z, Ma J. Variable online theme evolution model based on OLDA [J]. Information Science, 2017, 35: 63-68. [Google Scholar]
- Nimala K, Jebakumar R. Sentiment topic emotion model on students feedback for educational benefits and practices [J]. Behaviour & Information Technology, 2019, 38: 1259-1272. [Google Scholar]
- Xu Y, Li Y, Liang Y, et al. Topic-sentiment evolution over time: A manifold learning-based model for online news [J]. Journal of Intelligent Information Systems, 2020, 55(1): 27-49. [CrossRef] [Google Scholar]
- Pergola G, Gui L, He Y L. TDAM: A topic-dependent attention model for sentiment analysis [J]. Information Processing & Management, 2019, 56: 1325-1335. [Google Scholar]
- Zhang P Y, Liu D S. Topic evolutionary analysis of short text based on word vector and BTM [J]. Data Analysis and Knowledge Discovery, 2019, 3: 95-101. [Google Scholar]
- Zhao R Y, Zhang Y. Evolution study of sentiment analysis based on bibliometrics of time and space dimensions [J]. Information Science, 2018, 36: 171-177. [Google Scholar]
- Rao Y. Contextual sentiment topic model for adaptive social emotion classification [J]. IEEE Intelligent Systems, 2015, 31(1): 41-47. [Google Scholar]
- Cui X L, Narisa, Liu X J. Sentiment analysis of online reviews based on topic similarity [J]. Journal of Systems & Management, 2018, 27: 821-827. [Google Scholar]
- Jeyaraj A, Zadeh A H. Evolution of information systems research: Insights from topic modeling [J]. Information & Management, 2020, 57: 6-17. [Google Scholar]
- Wu C, Kanoulas E, de Rijke M. Learning entity-centric document representations using an entity facet topic model [J]. Information Processing & Management, 2020, 57(3): 102216-102278. [CrossRef] [Google Scholar]
- Zhang Y, Wei H, Ran Y, et al.Drawing openness to experience from user generated contents: An interpretable data-driven topic modeling approach [J]. Expert Systems with Applications, 2020, 144: 113073-113080. [Google Scholar]
- Xu Y M, Lü S N, Cai L Q, et al. Analyzing news topic evolution with convolutional neural networks and Topic2vec [J]. Data Analysis and Knowledge Discovery, 2018, 2: 31-41. [NASA ADS] [Google Scholar]
- Jelodar H, Wang Y L, Yuan C, et al. Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey [J]. Multimedia Tools and Applications, 2019, 78: 15169-15211. [Google Scholar]
- Wang G, Chi Y, Liu Y, et al. Studies on a multidimensional public opinion network model and its topic detection algorithm [J]. Information Processing & Management, 2019, 56(3): 584-608. [CrossRef] [Google Scholar]
- An L, Wu L. An integrated analysis of topical and emotional evolution of microblog public opinions on public emergencies [J]. Library and Information Service, 2017, 61: 120-129. [Google Scholar]
- Lin P, Jiang S, Li D, et al. Comprehending international important Ramsar wetland documents using latent semantic topic model in kernel space [J]. Natural Resource Modeling, 2019, 32(4): e12215. [Google Scholar]
- Ali F, Kwak D, Khan P, et al. Transportation sentiment analysis using word embedding and ontology-based topic modeling [J]. Knowledge-Based Systems, 2019, 174: 27-42. [Google Scholar]
- Liang Q, Wang K B. Monitoring of user-generated reviews via a sequential reverse joint sentiment-topic model [J]. Quality and Reliability Engineering International, 2019, 35: 1180-1199. [Google Scholar]
- Liu Y W, Liu Y H, Yang S, et al. OTSCM approach for tracking on-line sentiment of topic [J]. Journal of Modern Information, 2017, 37: 35-41. [Google Scholar]
- Wang Y, Taylor J E. DUET: Data-driven approach based on latent Dirichlet allocation topic modeling [J]. Journal of Computing in Civil Engineering, 2019, 33: 425-437. [Google Scholar]
- Nimala K, Jebakumar R. A robust user sentiment biterm topic mixture model based on user aggregation strategy to avoid data sparsity for short text [J]. Journal of Medical Systems, 2019, 43: 93-98. [Google Scholar]
- Deng D, Jing L P, Yu J, et al. Sentiment lexicon construction with hierarchical supervision topic model [C]// IEEE/ACM Transactions on Audio Speech and Language Processing. New York: ACM, 2019, 27: 704-718. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.