Open Access
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 2, April 2022
Page(s) 99 - 103
Published online 20 May 2022
  1. Onsager L . Statistical hydrodynamics [J]. Il Nuovo Cimento (1943-1954), 1949, 6(2): 279-287. [Google Scholar]
  2. Duchon J, Robert R. Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations [J]. Nonlinearity, 2000, 13(1): 249-255. [CrossRef] [MathSciNet] [Google Scholar]
  3. Feireisl E, Gwiazda P, Świerczewska-Gwiazda A, et al. Regularity and energy conservation for the compressible Euler equations [J]. Arch Ration Mech Anal, 2017, 223(3): 1375-1395. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. Constantin P, Weinan E, Titi E S. Onsager’s conjecture on the energy conservation for solutions of Euler’s equation [J]. Comm Math Phys, 1994, 165(1): 207-209. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. Caflisch R E, Klapper I, Steele G. Dimension and energy dissipation for ideal hydrodynamics and MHD [J]. Comm Math Phys, 1997, 184(2): 443-455. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. Kang E, Lee J. Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics [J]. Nonlinearity, 2007, 20(11): 2681-2689. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. Yu X . A note on the energy conservation of the ideal MHD equations [J]. Nonlinearity, 2009, 22(4): 913-922. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. Bie Q Y, Kang L P, Wang Q R, et al. Regularity and energy conservation for the compressible MHD equations [J]. Sci Sin Math, 2021, 52: 1-16. [Google Scholar]
  9. Wu Z E, Tan Z. Regularity and energy dissipation for the nonhomogeneous incompressible MHD equations [J]. Sci Sin Math, 2019, 49(12): 1967-1978. [CrossRef] [Google Scholar]
  10. Guo S, Tan Z. Local 4/5-law and energy dissipation anomaly in turbulence of incompressible MHD equations [J]. Z Angew Math Phys, 2016, 67(6): 1-12. [Google Scholar]
  11. Kang L P, Deng X M, Bie Q Y. Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations [J]. J Math Phys, 2021, 62(3): 031506. [CrossRef] [Google Scholar]
  12. Wang X, Liu S. Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain [J]. Nonlinear Anal: RWA, 2021, 62: 103359. [Google Scholar]
  13. Wang T, Zhao X, Chen Y, et al. Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions [J]. J Math Anal Appl, 2019, 480(2): 123373. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.