Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 2, April 2022
|
|
---|---|---|
Page(s) | 104 - 114 | |
DOI | https://doi.org/10.1051/wujns/2022272104 | |
Published online | 20 May 2022 |
- Hou J, Teng Z D. Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates [J]. Mathematics and Computers in Simulation, 2009, 79(10): 3038-3054. [CrossRef] [MathSciNet] [Google Scholar]
- Eckalbar J C, Eckalbar W L. Dynamics of an epidemic model with quadratic treatment [J]. Nonlinear Analysis: Real World Applications, 2011, 12(1):320-332. [Google Scholar]
- Hu Z X, Ma W B, Ruan S G. Analysis of SIR epidemic models with nonlinear incidence rate and treatment[J]. Mathematical Biosciences, 2012, 238 (1):12-20. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Hao L J, Jiang G R, Liu S Y, et al. Global dynamics of an SIRS epidemic model with saturation incidence [J]. Biosystems, 2013, 114 (1): 56-63. [CrossRef] [PubMed] [Google Scholar]
- Wang J J, Zhang J Z, Jin Z. Analysis of an SIR model with bilinear incidence rate [J]. Nonlinear Analysis: Real World Application, 2010, 11 (4): 2390-2402. [Google Scholar]
- Misra A K, Sharma A, Shukla J B. Stability analysis and optimal control of an epidemic model with awareness programs by media [J]. Biosystems, 2015, 138(1):53-62. [CrossRef] [PubMed] [Google Scholar]
- Ji C Y, Jiang D Q, Shi N Z. The behavior of an SIR epidemic model with stochastic perturbation [J]. Stochastic Analysis and Applications, 2012, 30 (5) :755-773. [CrossRef] [MathSciNet] [Google Scholar]
- Yang Q S, Jiang D Q, Shi N Z, et al. The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence [J]. Journal of Mathematical Analysis and Applications, 2012, 388 (1): 248-271. [CrossRef] [MathSciNet] [Google Scholar]
- Muroya Y, Enatsu Y, Nakata Y. Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate [J]. Journal of Mathematical Analysis and Applications, 2011, 377 (1): 1-14. [CrossRef] [MathSciNet] [Google Scholar]
- Kuniya T, Muroya Y. Global stability of a multi-group SIS epidemic model with varying total population size[J]. Applied Mathematics and Computation, 2015, 265 (15): 785-798. [CrossRef] [MathSciNet] [Google Scholar]
- Muroya Y, Kuniya T, Wang J L. Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure [J]. Journal of Mathematical Analysis and Applications, 2015, 425(1): 415-439. [CrossRef] [MathSciNet] [Google Scholar]
- Muroya Y, Li H X, Kuniya T. Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates [J]. Journal of Mathematical Analysis and Applications, 2014, 410(2): 719-732. [CrossRef] [MathSciNet] [Google Scholar]
- Wang J Y, Xiao Y N, Cheke R A. Modelling the effects of contaminated environments on HFMD infections in mainland China [J]. Biosystems, 2016, 140(1): 1-7. [CrossRef] [PubMed] [Google Scholar]
- Li M Y, Graef J R, Wang L C, et al. Global dynamics of a SEIR model with varying total population size [J]. Mathematical Biosciences, 1999, 160(2): 191-213. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Sun S L . Global dynamics of a SEIR model with a varying total population size and vaccination [J]. Int Journal of Math Analysis, 2012, 6(40): 1985-1995. [MathSciNet] [Google Scholar]
- Sun C G, Hsieh Y H. Global analysis of an SEIR model with varying population size and vaccination[J]. Applied Mathematical Modelling, 2010, 34 (10): 2685-2697. [CrossRef] [MathSciNet] [Google Scholar]
- Yuan Y, Bélair J. Threshold dynamics in an SEIRS model with latency and emporary immunity [J]. Journal of Mathematical Biology, 2014, 69(1): 875-904. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zhang T L, Teng Z D. Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence [J]. Chaos, Solitons and Fractals, 2008, 37(5): 1456-1468. [Google Scholar]
- Zhang Q L, Liu C, Zhang X. Analysis and control of an SEIR epidemic system with nonlinear transmission rate [J]. Complexity, Analysis and Control of Singular Biological Systems, 2012, 421(1): 203-225. [Google Scholar]
- Trawicki M B . Deterministic SEIRS epidemic model for modeling vital dynamics, vaccinations, and temporary immunity [J]. Mathematics, 2017, 5(1):7-25. [CrossRef] [Google Scholar]
- Zhao Z, Chen L S, Song X Y. Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate [J]. Mathematics and Computers in Simulation, 2008, 79(3): 500-510. [CrossRef] [MathSciNet] [Google Scholar]
- Ma Y L, Liu J B, Li H X. Global dynamics of an SIQR model with vaccination and elimination hybrid strategies [J]. Mathematics, 2018, 6(12): 1-12. [Google Scholar]
- Fan M, Li M Y, Wang K. Global stability of an SEIS epidemic model with recruitment and a varying total population size [J]. Mathematical Biosciences, 2001, 170(2): 199-208. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Vargas-De-León C . On the global stability of SIS, SIR and SIRS epidemic models with standard incidence [J]. Chaos, Solitons and Fractals, 2011, 44(12): 1106-1110. [Google Scholar]
- Li G H, Jin Z. Global stability of an SEI epidemic model [J]. Chaos, Solitons and Fractals, 2004, 21(4): 925-931. [Google Scholar]
- Chen Q L, Teng Z D, Wang L, et al. The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence[J]. Non-linear Dynamics, 2013, 71(1): 55-73. [CrossRef] [Google Scholar]
- Ma Y L, Chu Z Q, Li H J. Global dynamics of an SEIQR model with saturation incidence rate and hybrid strategies [J]. Journal of University of Science and Technology of China, 2021, 51 (2): 153-163(Ch). [Google Scholar]
- Amador J . The SEIQS stochastic epidemic model with external source of infection [J]. Applied Mathematical Modelling, 2016, 40(19-20): 8352-8365. [CrossRef] [MathSciNet] [Google Scholar]
- Silva C M . A nonautonomous epidemic model with general incidence and isolation[J]. Mathematical Methods in the Applied Sciences, 2014, 37 (13):1974-1991. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Bai Z G . Global dynamics of a SEIR model with information dependent vaccination and periodically varying transmission rate[J]. Mathematical Methods in the Applied Sciences, 2015, 38(11): 2403-2410. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Thieme H R . Convergence results and a poincare-bendi- xson trichotomy for asymptotically autonomous differential equations [J]. Journal of Mathematical Biology, 1992, 30(7): 755-763. [CrossRef] [MathSciNet] [Google Scholar]
- Li T T, Xue Y K. Global stability analysis of a delayed SEIQR epidemic model with quarantine and latent [J]. Applied Mathematics, 2013, 4(10):109-117. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.