Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 2, April 2022
|
|
---|---|---|
Page(s) | 115 - 124 | |
DOI | https://doi.org/10.1051/wujns/2022272115 | |
Published online | 20 May 2022 |
- Gardner R . The Brunn-Minkowski inequality [J]. Bull Amer Math Soc, 2002, 39(3): 355-405. [CrossRef] [MathSciNet] [Google Scholar]
- Firey W J . p-Means of convex bodies [J]. Math Scand, 1962, 10: 17-24. [CrossRef] [MathSciNet] [Google Scholar]
- Lutwak E . The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem [J]. J Differential Geom, 1993, 38(1): 131-150. [CrossRef] [MathSciNet] [Google Scholar]
- Lutwak E . The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas [J]. Adv Math, 1996, 118(2): 244-294. [CrossRef] [MathSciNet] [Google Scholar]
- Campi S, Gronchi P. The L p -Busemann-Petty centroid inequality [J]. Adv Math, 2002, 167(1): 128-141. [CrossRef] [MathSciNet] [Google Scholar]
- Chou K S, Wang X J. The L p -Minkowski problem and the Minkowski problem in centroaffine geometry [J]. Adv Math, 2006, 205(1): 33-83. [CrossRef] [MathSciNet] [Google Scholar]
- Haberl C, Schuster F E. General L p affine isoperimetric inequalities [J]. J Differential Geom, 2009, 83(1): 1-26. [CrossRef] [MathSciNet] [Google Scholar]
- Schtt C, Werner E. Surface bodies and p-affine surface area [J]. Adv Math, 2004, 187(1): 98-145. [CrossRef] [MathSciNet] [Google Scholar]
- Wang W . L p Brunn-Minkowski type inequalities for Blaschke-Minkowski homomorphisms [J]. Geom Dedicata, 2013, 164(1): 273-285. [CrossRef] [MathSciNet] [Google Scholar]
- Lutwak E, Yang D, Zhang G Y. Orlicz centroid bodies [J]. J Differential Geom, 2010, 84(2): 365-387. [MathSciNet] [Google Scholar]
- Lutwak E, Yang D, Zhang G Y. Orlicz projection bodies [J]. Adv Math, 2010, 223(1): 220-242. [CrossRef] [MathSciNet] [Google Scholar]
- Li A J, Leng G S. A new proof of the Orlicz Busemann-Petty centroid inequality [J]. Proc Amer Math Soc, 2011, 139(4): 1473-1481. [CrossRef] [MathSciNet] [Google Scholar]
- Gardner R J, Hug D, Weil W. The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities [J]. J Differential Geom, 2014, 97(3): 427-476. [CrossRef] [MathSciNet] [Google Scholar]
- Xiong G, Zou D. Orlicz mixed quermassintegrals [J]. Sci China Math, 2014, 57(12): 2549-2562. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Xi D M, Jin H L, Leng G S. The Orlicz Brunn-Minkowski inequality [J]. Adv Math, 2014, 260: 350-374. [CrossRef] [MathSciNet] [Google Scholar]
- Lutwak E . Dual mixed volumes [J]. Pacific J Math, 1975, 58(2): 531-538. [CrossRef] [MathSciNet] [Google Scholar]
- Gardner R J, Hug D, Weil W, et al. The dual Orlicz-Brunn-Minkowski theory [J]. J Math Anal Appl, 2015, 430(2): 810-829. [CrossRef] [MathSciNet] [Google Scholar]
- Zhu G X . The Orlicz centroid inequality for star bodies [J]. Adv in Appl Math, 2012, 48(2): 432-445. [CrossRef] [MathSciNet] [Google Scholar]
- Cifre M A H, Nicols J Y. On Brunn-Minkowski-type inequalities for polar bodies [J]. J Geom Anal, 2016, 26(1): 143-155. [CrossRef] [MathSciNet] [Google Scholar]
- Firey W J . Polar means of convex bodies and a dual to the Brunn-Minkowski theorem [J]. Canad J Math, 1961, 13: 444-453. [CrossRef] [Google Scholar]
- Wang Y, Huang Q Z. Orlicz-Brunn-Minkowski inequality for polar bodies and dual star bodies [J]. Math Inequal Appl, 2017, 20(4): 1139-1144. [MathSciNet] [Google Scholar]
- Liu L J . The polar Orlicz-Brunn-Minkowski inequalities [J]. Math Inequal Appl, 2020, 23(2): 653-662. [MathSciNet] [Google Scholar]
- Wang W , Liu L J. Orlicz-Brunn-Minkowski inequalities for complex projection bodies [J]. Wuhan Univ J Nat Sci, 2021, 26(1): 8-14. [Google Scholar]
- Huang Q Z, He B W. On the Orlicz Minkowski problem for polytopes [J]. Discrete Comput Geom, 2012, 48(2): 281-297. [CrossRef] [MathSciNet] [Google Scholar]
- Wang G T, Leng G S, Huang Q Z. Volume inequalities for Orlicz zonotopes [J]. J Math Anal Appl, 2012, 391(1): 183-189. [CrossRef] [MathSciNet] [Google Scholar]
- Hardy G H, Littlewood J E, Plya G, et al. Inequalities [M]. Cambridge: Cambridge University Press, 1952. [Google Scholar]
- Zhu B C, Zhou J Z, Xu W X. Dual Orlicz-Brunn-Minkowski theory [J]. Adv Math, 2014, 264: 700725. [Google Scholar]
- Firey W J . Mean cross-section measures of harmonic means of convex bodies [J]. Pacifc J Math, 1961, 11(4): 1263-1266. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.