Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 3, June 2022
Page(s) 189 - 194
DOI https://doi.org/10.1051/wujns/2022273189
Published online 24 August 2022
  1. Fathi A. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens[J]. Comptes Rendus de I'Acadé- mie des Sciences. Série I. Mathématique, 1997, 324(9): 1043-1046. [Google Scholar]
  2. Fathi A. Sur la convergence du semi-groupe de Lax-Oleinik[J]. Comptes Rendus de I'Académie des Sciences. Série I. Mathématique, 1998, 327(3): 267-270. [MathSciNet] [Google Scholar]
  3. Roquejoffre J M. Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations[J]. Journal de Mathématiques Pures et Appliquées. Neuvième Série, 2001, 80(1): 85-104. [CrossRef] [MathSciNet] [Google Scholar]
  4. Davini A, Siconolfi A. A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations[J]. SIAM Journal on Mathematical Analysis, 2006, 38(2): 478-502. [CrossRef] [MathSciNet] [Google Scholar]
  5. Namah G, Roquejoffre J M. Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[J]. Communications in Partial Differential Equations, 1999, 24(5-6): 883-893. [CrossRef] [MathSciNet] [Google Scholar]
  6. Barles G, Souganidis P E. On the large time behavior of solutions of Hamilton-Jacobi equations[J]. SIAM Journal on Mathematical Analysis, 2000, 31(4): 925-939. [CrossRef] [MathSciNet] [Google Scholar]
  7. Barles G, Ishii H, Mitake H. A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations[J]. Bulletin of Mathematical Sciences, 2013, 3(3):363-388. [CrossRef] [MathSciNet] [Google Scholar]
  8. Bravetti A, Cruz H, Tapias D. Contact Hamiltonian mechanics[J]. Annals of Physics, 2016, 376:17-39. [Google Scholar]
  9. Marò S, Sorrentino A. Aubry-Mather theory for conformally symplectic systems[J]. Communications in Mathematical Physics, 2017, 354(2): 775-808. [CrossRef] [MathSciNet] [Google Scholar]
  10. Grmela M, Öttinger H. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism[J]. Physical Review E, 1997, 56(6): 6620-6632. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  11. Bravetti A, Tapias D. Thermostat algorithm for generating target ensembles[J]. Physical Review E, 2016, 93(2): 022139. [CrossRef] [MathSciNet] [Google Scholar]
  12. Grmela M. Reciprocity relations in thermodynamics[J]. Physica A Statistical Mechanics & Its Applications, 2002, 309(3-4): 304-328. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  13. Rajeev S G. A Hamilton-Jacobi formalism for thermodynamics[J]. Annals of Physics, 2008, 323(9): 2265-2285. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. Su X F, Wang L, Yan J. Weak KAM theory for Hamilton-Jacobi equations depending on unknown function[J]. Discrete and Continuous Dynamical Systems, 2016, 36(11): 6487-6522. [CrossRef] [MathSciNet] [Google Scholar]
  15. Wang K Z, Wang L, Yan J. Implicit variational principle for contact Hamiltonian systems[J]. Nonlinearity, 2017, 30(2): 492-515. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. Wang K Z, Wang L, Yan J. Aubry-Mather theory for contact Hamiltonian systems[J]. Communications in Mathematical Physics, 2019, 366(3): 981-1023. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. Wang K Z, Wang L, Yan J. Variational principle for contact Hamiltonian systems and its applications[J]. Journal de Mathématiques Pures et Appliquées. Neuvième Série, 2019, 123(9): 167-200. [CrossRef] [MathSciNet] [Google Scholar]
  18. Li X. Long-time asymptotic solutions of convex Hamilton-Jacobi equations depending on unknown functions[J]. Discrete and Continuous Dynamical Systems. Series A, 2017, 37(10): 5151-5162. [CrossRef] [MathSciNet] [Google Scholar]
  19. Barles G. Existence results for first order Hamilton Jacobi equations[J]. Annales de I'Institut Henri Poincare C, Analysis non linearire, 1984, 1(5): 325-340. [NASA ADS] [Google Scholar]
  20. Barles G. Uniqueness and regularity results for first-order Hamilton-Jacobi equations[J]. Indiana University Mathematics Journal, 1990, 39(2): 443-466. [CrossRef] [MathSciNet] [Google Scholar]
  21. Ishii H. A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton-Jacobi equations[J]. Lecture Notes in Mathematics, 2013, 2074: 111-249. [CrossRef] [Google Scholar]
  22. Lions P L. Generalized Solutions of Hamilton-Jacobi Equations[M]. London: Pitman, 1982. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.