Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 27, Number 3, June 2022
|
|
---|---|---|
Page(s) | 201 - 210 | |
DOI | https://doi.org/10.1051/wujns/2022273201 | |
Published online | 24 August 2022 |
- Li Z P. Classical and Quantal Dynamics of Contrained Systems and Their Symmetrical Properties [M]. Beijing: Beijing Polytechnic University Press, 1993(Ch). [Google Scholar]
- Li Z P. Contrained Hamiltonian Systems and Their Symmetrical Properties [M]. Beijing: Beijing Polytechnic University Press, 1999(Ch). [Google Scholar]
- Li Z P, Jiang J H. Symmetries in Constrained Canonical Systems [M]. Beijing: Science Press, 2002. [Google Scholar]
- Kusnezov D, Bulgac A, Dang G D. Quantum Lévy processes and fractional kinetics [J]. Phys Rev Lett, 1999, 82: 1136-1139. [NASA ADS] [CrossRef] [Google Scholar]
- Naber M. Time fractional Schrdinger equation [J]. J Math Phys, 2004, 45: 3339-3352. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Muslih S I, Agrawal O P, Baleanu D. A fractional Dirac equation and its solution [J]. J Phys A Math Theor, 2010, 43(5): 055203. [NASA ADS] [CrossRef] [Google Scholar]
- Metzler R, Klafter J. The random walk's guide to anomalous diffusion: A fractional dynamics approach [J]. Phys Rep, 2000, 339(1): 1-77. [CrossRef] [Google Scholar]
- Herrmann R. Gauge invariance in fractional field theories [J]. Phys Lett A, 2008, 372(34): 5515-5522. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Lazo M J. Gauge invariant fractional electromagnetic fields [J]. Phys Lett A, 2011, 375(41): 3541-3546. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wu Q, Huang J H. Fractional Calculus [M]. Beijing: Tsinghua University Press, 2016(Ch). [Google Scholar]
- Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics [J]. Phys Rev E, 1996, 53(2): 1890-1899. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Riewe F. Mechanics with fractional derivatives [J]. Phys Rev E, 1997, 55(3): 3581-3592. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Klimek M. Lagrangian and Hamiltonian fractional sequential mechanics [J]. Czech J Phys, 2002, 52(11): 1247-1253. [NASA ADS] [CrossRef] [Google Scholar]
- Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems [J]. J Math Anal Appl, 2002, 272(1): 368-379. [CrossRef] [MathSciNet] [Google Scholar]
- Agrawal O P. Fractional variational calculus in terms of Riesz fractional derivatives [J]. J Phys A Math Theor, 2007, 40(24): 6287-6303. [CrossRef] [Google Scholar]
- Muslih S I, Baleanu D. Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives [J]. J Math Anal Appl, 2005, 304(2): 599-606. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Rabei E M, Nawafleh K I, Hijjawi R S, et al. The Hamilton formalism with fractional derivatives [J]. J Math Anal Appl, 2007, 327(2): 891-897. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Malinowska A B, Torres D F M. Introduction to the Fractional Calculus of Variations [M]. London: Imp Coll Press, 2012. [CrossRef] [Google Scholar]
- Zhang H B, Chen H B. Generalized variational problems and Birkhoff equations [J]. Nonlinear Dyn, 2016, 83(1-2): 347-354. [CrossRef] [Google Scholar]
- Song C J, Agrawal O P. Hamiltonian formulation of systems described using fractional singular Lagrangian [J]. Acta Appl Math, 2021, 172: 9. [CrossRef] [Google Scholar]
- Luo S K, Xu Y L. Fractional Birkhoffian mechanics [J]. Acta Mech, 2015, 226(3): 829-844. [CrossRef] [MathSciNet] [Google Scholar]
- Frederico G S F, Torres D F M. Fractional Noether's theorem with classical and Riemann-Liouville derivatives [C]// Proceedings of the 51st IEEE Conference on Decision and Control . Washington D C: IEEE Press, 2012: 6885-6890. [Google Scholar]
- Song C J, Zhang Y. Conserved quantities for Hamiltonian systems on time scales [J]. Appl Math Comput, 2017, 313: 24-36. [MathSciNet] [Google Scholar]
- Song C J, Zhang Y. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications [J]. Fract Calc Appl Anal, 2018, 21(2): 509-526. [CrossRef] [MathSciNet] [Google Scholar]
- Zhang Y, Tian X. Conservation laws for Birkhoffian systems of Herglotz type [J]. Chin Phys B, 2018, 27(9): 090502. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang Y, Tian X. Conservation laws of nonholonomic nonconservative system based on Herglotz variational problems [J]. Phys Lett A, 2019, 383(8): 691-696. [CrossRef] [MathSciNet] [Google Scholar]
- Zhang Y. Lie symmetry and invariants for a generalized Birkhoffian system on time scales [J]. Chaos, Solitons and Fractals, 2019, 128: 306-312. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Ding J J, Zhang Y. Conserved quantities and adiabatic invariants of fractional Birkhoffian system of Herglotz type [J]. Chin Phys B, 2020, 29(4): 044501. [NASA ADS] [CrossRef] [Google Scholar]
- Zhou Y, Zhang Y. Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives [J]. Acta Mech, 2020, 231(7): 3017-3029. [CrossRef] [MathSciNet] [Google Scholar]
- Zhai X H, Zhang Y. Mei symmetry and new conserved quantities of time-scale Birkhoff's equations [J]. Complexity, 2020, 2020: 1691760. [Google Scholar]
- Mei F X. Analytical Mechanics (II) [M]. Beijing: Beijing Institute of Technology Press, 2013(Ch). [Google Scholar]
- Mei F X. Symmetry and Conserved Quantity of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2004(Ch). [Google Scholar]
- Mei F X, Wu H B. Dynamics of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2009. [Google Scholar]
- Mei F X, Wu H B, Zhang Y F. Symmetries and conserved quantities of constrained mechanical systems [J]. Int J Dynam Control, 2014, 2(3): 285-303. [CrossRef] [Google Scholar]
- Cai P P, Fu J L, Guo Y X. Lie symmetries and conserved quantities of the constraint mechanical systems on time scales [J]. Reports on Mathematical Physics, 2017, 79(3): 279-298. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Han Y L, Wang X X, Zhang M L, et al. Lie symmetry and approximate Hojman conserved quantity of Appell equations for a weakly nonholonomic system [J]. Nonlinear Dyn, 2013, 71(3): 401-408. [CrossRef] [Google Scholar]
- Chen X W, Li Y M, Zhao Y H. Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system [J]. Phys Lett A, 2005, 337(4-6): 274-278. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Ding N, Fang J H. Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems [J]. Commun Theor Phys, 2006, 46(2): 265-268. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Zhang Y, Xun Y. Lie symmetries of constrained Hamiltonian system with the second type of constraints [J]. Acta Phys Sin, 2001, 50(5): 816-819. [CrossRef] [Google Scholar]
- Song C J, Shen S L. Noether symmetry method for Birkhoffian systems in terms of generalized fractional operators [J]. Theor Appl Mech Lett, 2021, 11(6): 100298. [CrossRef] [Google Scholar]
- Jia Q L, Wu H B, Mei F X. Noether symmetries and conserved quantities for fractional forced Birkhoffian systems [J]. J Math Anal Appl, 2016, 442(2): 782-795. [CrossRef] [MathSciNet] [Google Scholar]
- Xia L L, Chen L Q. Conformal invariance of Mei symmetry for discrete Lagrangian systems [J]. Acta Mech, 2013, 224(9): 2037-2043. [CrossRef] [MathSciNet] [Google Scholar]
- Wang P, Xue Y. Conformal invariance of Mei symmetry and conserved quantities of Lagrange equation of thin elastic rod [J]. Nonlinear Dyn, 2016, 83(4): 1815-1822. [CrossRef] [Google Scholar]
- Jiang W A, Luo S K. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system [J]. Acta Phys Sin, 2011, 60(6): 060201. [Google Scholar]
- Zhou S, Fu H, Fu J L. Symmetry theories of Hamiltonian systems with fractional derivatives [J]. Sci China: Phys Mech Astro, 2011, 54(10): 1847-1853. [NASA ADS] [Google Scholar]
- Song C J. Mei symmetry for constrained mechanical systems on time scales [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(2): 353-360. [Google Scholar]
- Song C J, Cheng Y. Noether symmetry method for Hamiltonian mechanics involving generalized operators [J]. Adv Math Phys, 2021, 2021: 1959643. [Google Scholar]
- Song C J, Cheng Y. Noether's theorems for nonshifted dynamic systems on time scales [J]. Appl Math Comput, 2020, 374: 125086. [MathSciNet] [Google Scholar]
- Zhang Y. Mei's symmetry theorems for non-migrated Birkhoffian systems on a time scale [J]. Acta Phys Sin, 2021, 70(24): 244501. [CrossRef] [Google Scholar]
- Zhang Y. Mei symmetry and conservation laws for time-scale nonshifted Hamilton equations [J]. Adv Math Phys, 2021, 2021: 7329399. [Google Scholar]
- Zhang Y, Tian X, Zhai X H, et al. Hojman conserved quantity for time scales Lagrange systems [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2829-2837. [Google Scholar]
- Zhang Y, Cai J X. Noether theorem of Herglotz-type for nonconservative Hamilton systems in event space [J]. Wuhan University Journal of Natural Sciences, 2021, 26(5): 376-382. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.