Open Access
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 1, February 2023
Page(s) 15 - 19
Published online 17 March 2023
  1. Reed S, Solomon G. Polynomial codes over certain finite fields[J]. Journal of the Society for Industrial and Applied Mathematics, 1960, 8(2): 300-304. [CrossRef] [MathSciNet] [Google Scholar]
  2. Dur A. The automorphism groups of Reed-Solomon codes[J]. J Combin Theory, Ser A, 1987, 44(1): 69-82. [CrossRef] [MathSciNet] [Google Scholar]
  3. Dur A. The decoding of extended Reed-Solomon codes[J]. Discrete Math, 1991, 90(1): 21-40. [CrossRef] [MathSciNet] [Google Scholar]
  4. Dur A. Complete decoding of doubly-extended Reed-Solomon codes of minimum distance 5 and 6[J]. Discrete Appl Math, 1991, 33(1/2/3): 95-107. [CrossRef] [MathSciNet] [Google Scholar]
  5. Dur A. On the covering radius of Reed-Solomon codes[J]. Discrete Math, 1994, 126(1/2/3): 99-105. [CrossRef] [MathSciNet] [Google Scholar]
  6. Zhang J, Wan D Q, Kaipa K. Deep holes of projective Reed-Solomon codes[J]. IEEE Trans Inform Theory, 2020, 66(4): 2392-2401. [CrossRef] [MathSciNet] [Google Scholar]
  7. Cheng Q, Murray E. On deciding deep holes of Reed-Solomon codes[J]. Lecture Notes in Comput Sci, 2007, 4484: 296-305. [CrossRef] [Google Scholar]
  8. Zhang J, Wan D Q. On deep holes of projective Reed-Solomon codes[C]//2016 IEEE International Symposium Information Theory. Washington D C: IEEE, 2016: 925-929. [Google Scholar]
  9. Kaipa K. Deep holes and MDS extensions of Reed-Solomon codes[J]. IEEE Trans Inform Theory, 2017, 63(8): 4940-4948. [CrossRef] [MathSciNet] [Google Scholar]
  10. Xu X F, Hong S F, Xu Y C. On deep holes of primitive projective Reed-Solomon codes[J]. Sci Sin Math, 2018, 48(8): 1087-1094. [CrossRef] [Google Scholar]
  11. Hong S F, Wu R J. On deep holes of generalized Reed-Solomon codes[J]. AIMS Math, 2016, 1(2): 96-101. [CrossRef] [Google Scholar]
  12. Keti M, Wan D. Deep holes in Reed-Solomon codes based on Dickson polynomials[J]. Finite Fields Appl, 2016, 40: 110-125. [CrossRef] [MathSciNet] [Google Scholar]
  13. Li Y J, Wan D Q. On error distance of Reed-Solomon codes[J]. Sci China Ser A, 2008, 51(11): 1982-1988. [CrossRef] [MathSciNet] [Google Scholar]
  14. Li Y J, Zhu G Z. On the error distance of extended Reed-Solomon codes[J]. Adv Math Commun, 2016, 10(2): 413-427. [CrossRef] [MathSciNet] [Google Scholar]
  15. Wu R J, Hong S F. On deep holes of standard Reed-Solomon codes[J]. Science China Math, 2012, 55(12): 2447-2455. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. Zhuang J C, Cheng Q, Li J Y. On determing deep holes of generalized Reed-Solomon codes[J]. IEEE Trans Inform Theory, 2016, 62(1): 199-207. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.