Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 1, February 2023
Page(s) 11 - 14
DOI https://doi.org/10.1051/wujns/2023281011
Published online 17 March 2023
  1. Banach S. Sur les opérations dans les ensembles abstraits et leur application Aux équations intégrales[J]. Fundamenta Mathematicae, 1922, 3: 133-181. [CrossRef] [MathSciNet] [Google Scholar]
  2. Ciric L B. A generalization of Banach contraction principle[J]. Proc Am Math Soc, 1974, 45: 267-273. [Google Scholar]
  3. Ciric L B. Generalized contractions and fixed-point theorems[J]. Publ Inst Math , 1971, 12(26): 19-26. [MathSciNet] [Google Scholar]
  4. Rhoades B E. Fixed point iterations using infinite matrices[J]. Transactions of the American Mathematical Society, 1974, 196: 161-176. [Google Scholar]
  5. Rhoades B E. Some fixed point theorems in a Banach space[J]. Comment Math Univ St Pauli, 1976, 24: 13-16. [Google Scholar]
  6. Caristi J. Fixed point theorems for mappings satisfying inwardness conditions[J]. Transactions of the American Mathematical Society, 1976, 215: 241-251. [Google Scholar]
  7. Kirk W A, Caristi J. Mapping theorems in metric and Banach spaces[J]. Bulletin of the Polish Academy of Sciences, 1975, 25: 891-894. [Google Scholar]
  8. Ekeland I. On the variational principle[J]. J Math Anal Appl, 1974, 47(2): 324- 353. [CrossRef] [MathSciNet] [Google Scholar]
  9. Ekeland I. Nonconvex minimization problems[J]. Bull Am Math Soc, 1979, 1(3): 443-474. [CrossRef] [Google Scholar]
  10. Kimura Y, Toyoda M. Fixed point theorem in ball spaces and Caristis fixed point theorem[J]. Journal of Nonlinear and Convex Analysis, 2022, 23:185-189. [Google Scholar]
  11. Bakery A A, El Dewaik M H. A generalization of Caristi's fixed point theorem in the variable exponent weighted formal power series space[J]. Journal of Function Spaces, 2021, 2021: 1-18. [Google Scholar]
  12. Romaguera S. On the correlation between Banach contraction principle and caristi's fixed point theorem in b-metric spaces[J]. Mathematics, 2022, 10(1): 136. [Google Scholar]
  13. Karapınar E, Khojasteh F, Mitrović Z. A proposal for revisiting Banach and caristi type theorems in b-metric spaces[J]. Mathematics, 2019, 7(4): 308. [CrossRef] [Google Scholar]
  14. Du W S, Karapinar E. A note on Caristi-type cyclic maps: Related results and applications[J]. Fixed Point Theory and Applications, 2013, 2013: 344. [CrossRef] [Google Scholar]
  15. Karapiner E, Khojasteh F, Shatanawi W. Revisiting ćirić-type contraction with caristi's approach[J]. Symmetry, 2019, 11(6): 726. [CrossRef] [Google Scholar]
  16. Zhang S. Fixed Point Theory and Application[M]. Chongqing: Chongqing Press, 1984(Ch). [Google Scholar]
  17. Vasile I S. Fixed Point Theory, An Introduction[M]. Dordrecht: D. Reidel Pulishing Company, 1981. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.