Open Access
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 1, February 2023
Page(s) 1 - 10
Published online 17 March 2023
  1. Nield D A, Bejan A. Convection in Porous Media [M]. New York: Springer-Verlag , 1992. [CrossRef] [Google Scholar]
  2. Payne L E, Straughan B. Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in a porous media [J]. Journal de Mathématiques Pures et Appliquées, 1996, 75(3): 225-271. [Google Scholar]
  3. Payne L E, Straughan B. Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions [J]. Journal de Mathématiques Pures et Appliquées, 1998, 77(4): 317-354. [CrossRef] [MathSciNet] [Google Scholar]
  4. Celebi A O, Kalantarov V, Ugurlu D. Continuous dependence for the convective Brinkman-Forchheimer equations [J]. Applicable Analysis, 2005, 84(9): 877-888. [CrossRef] [MathSciNet] [Google Scholar]
  5. Celebi A O, Kalantarov V, Ugurlu D. On continuous dependence on coefficients of the Brinkman Forchheimer equations [J]. Applied Mathematics Letters, 2006, 19(8): 801-807. [CrossRef] [MathSciNet] [Google Scholar]
  6. Liu Y. Convergence and continuous dependence for the Brinkman-Forchheimer equations [J]. Mathematical and Computer Modelling, 2009, 49(7-8): 1401-1415. [Google Scholar]
  7. Payne L E, Straughan B. Convergence and continuous dependence for the Brinkman-Forchheimer equations [J]. Studies in Applied Mathematics, 1999, 102(4): 419-439. [CrossRef] [MathSciNet] [Google Scholar]
  8. Liu Y, Xiao S Z, Lin Y W. Continuous dependence for the Brinkman-Forchheimer fluid inter facing with a Darcy fluid in a bounded domain [J]. Mathematics and Computers in Simulation, 2018, 150: 66-82. [CrossRef] [MathSciNet] [Google Scholar]
  9. Li Y F, Lin C H. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinitepipe [J]. Applied Mathematics and Computation , 2014, 244: 201-208. [CrossRef] [MathSciNet] [Google Scholar]
  10. Ugurlu D. On the existence of a global attractor for the Brinkman-Forchheimer equation [J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68(7): 1986-1992. [CrossRef] [MathSciNet] [Google Scholar]
  11. Ouyang Y, Yang L E. A note on the existence of a global attractor for the Brinkman Forchheimer equations [J]. Nonlinear Analysis :Theory, Methods & Applications, 2009, 70(5): 2054-2059. [CrossRef] [MathSciNet] [Google Scholar]
  12. Wang B X, Lin S Y. Existence of global attractors for the three-dimensional Brinkman Forchheimer equations [J]. Mathematical Methods in the Applied Sciences, 2010, 31(12): 1479-1495. [Google Scholar]
  13. Song X L. Pullback D-attractors for a non-autonomous Brinkman-Forchheimer system [J]. Journal of Mathematical Research with Applications, 2013, 33(1): 90-100. [Google Scholar]
  14. Song X L, Xu S, Qiao B M. Formula - decay of solutions for the three-dimensional Brinkman Forchheimer equations in Formula [J] . Mathematics in Practice and Theory, 2020, 50(22): 307-314(Ch). [Google Scholar]
  15. Song X L, Wu J H. Non-autonomous 3D Brinman-Forchheimer equation with oscillating external force and its uniform attractor [J]. AIMS Mathematics, 2020, 5(2): 1484-1504. [CrossRef] [MathSciNet] [Google Scholar]
  16. Liu W J, Yang R, Yang X G. Dynamics of a 3D Brinman Forchheimer equation with infinite delay [J]. Communications on Pure and Applied Analysis, 2021, 20(5): 1907-1930. [CrossRef] [MathSciNet] [Google Scholar]
  17. Yang X G, Li L, Yan X J, et al. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay [J]. Electronic Research Archive, 2020, 28(4): 1395-1418. [CrossRef] [MathSciNet] [Google Scholar]
  18. Qiao B M, Li X F, Song X L. The existence of global attractors for the strong solutions of three-dimensional Brinkman Forchheimer equations [J]. Mathematics in Practice and Theory, 2020, 50(10): 238-251(Ch). [Google Scholar]
  19. Kalantarov V K, Titi E S. Global attractors and determining modes for the 3D Navier-Stokes-Voight equations [J]. Chinese Annals of Mathematics, Series B, 2009, 30(6): 697-714. [Google Scholar]
  20. Zelati M C, Gal C G. Singular limits of Voigt models in fluid dynamics [J]. Journal of Mathematical Fluid Mechanics, 2015, 17(2): 233-259. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  21. Mohan M T. Global and exponential attractors for the 3D Kelvin-Voigt-Brinkman Forchheimer equations [J]. Discrete and Continuous Dynamical Systems, Series B, 2020, 25(9): 3393-3436. [CrossRef] [MathSciNet] [Google Scholar]
  22. Ilyin A A. On the spectrum of the Stokes operator [J]. Functional Analysis and Its Applications, 2009, 43(4): 254-263. [CrossRef] [MathSciNet] [Google Scholar]
  23. Temam R H. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 1997. [CrossRef] [Google Scholar]
  24. Cai X, Jiu Q. Weak and strong solutions for the incompressible Navier-Stokes equations with damping [J]. Journal of Mathematical Analysis and Applications, 2008, 343(2): 799-809. [Google Scholar]
  25. Kuang J C. Applied Inequalities [M]. Jinan: Shandong Science and Technology Press, 2010(Ch). [Google Scholar]
  26. Constantin P, Foias C. Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations [J]. Communications on Pure & Applied Mathematics, 1985, 38(1): 1-27. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.