Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 2, April 2023
|
|
---|---|---|
Page(s) | 93 - 98 | |
DOI | https://doi.org/10.1051/wujns/2023282093 | |
Published online | 23 May 2023 |
- Böröczky K, Schneider R. A characterization of the duality mapping for convex bodies[J]. Geom Funct Anal, 2008,18(3): 657-667. [CrossRef] [MathSciNet] [Google Scholar]
- Firey W J. Polar means of convex bodies and a dual to the Brunn-Minkowski theorem[J]. Canad J Math, 1961, 13: 444-453. [CrossRef] [Google Scholar]
- Ludwig M. Ellipsoids and matrix-valued valuations[J]. Duke Math J, 2003, 119(1): 159-188. [MathSciNet] [Google Scholar]
-
Ludwig M, Reitzner M. A classification of
invariant valuations[J]. Ann Math, 2010, 172(2): 1219-1267. [Google Scholar]
- Lutwak E, Yang D, Zhang G Y. A volume inequality for polar bodies[J]. J Differential Geom, 2010, 84(1): 163-178. [Google Scholar]
- Hernández Cifre M A, Nicolás J Y. On Brunn-Minkowski-type inequalities for polar bodies[J]. J Geom Anal, 2016, 26(1): 143-155. [CrossRef] [MathSciNet] [Google Scholar]
- Liu L. The polar Orlicz-Brunn-Minkowski inequalities[J]. Math Inequal Appl, 2020, 23(2): 653-662. [MathSciNet] [Google Scholar]
-
Liu L J, Wang W.
contravariant
harmonic valuations on polytopes[J]. Discrete Comput Geom, 2021, 66(3): 977-995. [CrossRef] [MathSciNet] [Google Scholar]
-
Wang W, Liu L J. Complex
affine isoperimetric inequalities[J]. Adv Appl Math, 2021, 122: 102108. [Google Scholar]
-
Wang W.
equivariant matrix-valued valuations on polytopes[J]. Int Math Res Notices, 2022, 13:10302-10346. [Google Scholar]
- Mahler K. Ein minimalproblem für konvexe polygone[J]. Mathematica (Zutphen) B, 1939, 7: 118-127 (German). [Google Scholar]
- Mahler K. Ein Ü bertragungsprinzip für konvexe Körper[J]. Časopis Pěst Mat Fys, 1939, 68: 93-102 (German). [Google Scholar]
- Reisner S. Zonoids with minimal volume-product[J]. Math Z, 1986, 192(3): 339-346. [CrossRef] [MathSciNet] [Google Scholar]
-
Meyer M. Convex bodies with minimal volume product in
[J]. Monatsh Math, 1991, 112(4): 297-301. [CrossRef] [MathSciNet] [Google Scholar]
- Iriyeh H, Shibata M. Symmetric Mahler's conjecture for the volume product in the 3-dimensional case[J]. Duke Math J, 2020, 169(6): 1077-1134. [Google Scholar]
- Schneider R. Convex Bodies: The Brunn-Minkowski Theory [M]. 2nd Edition. New York: Cambridge University Press, 2014. [Google Scholar]
- Artstein-Avidan S, Milman V. A characterization of the concept of duality, and the characterization of the Legendre transform[J]. Ann of Math, 2009, 169(2): 661-674. [Google Scholar]
- Artstein-Avidan S, Milman V. A characterization of the concept of duality[J]. Electron Res Anounc Math Sci, 2007, 14: 48-65. [Google Scholar]
- Artstein-Avidan S, Milman V. The concept of duality for measure projections of convex bodies[J]. J Funct Ananl, 2008, 254(10): 2648-2666. [Google Scholar]
- Artstein-Avidan S, Milman V. A new duality transform[J]. Geom Funct Anal, 2008, 346(21): 1143-148. [Google Scholar]
- Artstein-Avidan S, Milman V. A characterization of the support map[J]. Adv Math, 2010, 223(1): 379-391. [CrossRef] [MathSciNet] [Google Scholar]
- Artstein-Avidan S, Milman V. Hidden structures in the class of convex functions and a new duality transform[J]. J Eur Math Soc, 2010, 13(4): 975-1004. [Google Scholar]
- Gruber P M. The endomorphisms of the lattice of convex bodies[J]. Abh Math Sem Univ Hamburg, 1991, 61(1): 121-130. [Google Scholar]
- Gruber P M. The endomorphisms of the lattice of norms in finite dimensions[J]. Abh Math Sem Univ Hamburg, 1992, 62(1): 179-189. [Google Scholar]
- Abardia-Evequoz J, Colesanti A, Saorin-Gomez E. Minkowski additive operators under volume constraints[J]. J Geom Anal, 2018, 28(3): 2422-2455. [Google Scholar]
- Alesker S. Valuations on convex functions and convex sets and Monge-Ampere operators[J]. Adv Geom, 2019, 19(3): 313-322. [CrossRef] [MathSciNet] [Google Scholar]
- Hofstätter G C, Schuster F E. Blaschke-Santaló inequalities for Minkowski and Asplund endomorphisms[EB/OL]. [2022-08-10]. http://www.arXiv:2101.07031. [Google Scholar]
- Kiderlen M. Blaschke- and Minkowski-endomorphisms of convex bodies[J]. Trans Amer Math Soc, 2006, 358(12): 5539-5564. [Google Scholar]
- Slomka B. On duality and endomorphisms of lattices of closed convex sets[J]. Adv Geom, 2011, 11(2): 225-239. [CrossRef] [MathSciNet] [Google Scholar]
- Gardner R. Geometric Tomography[M]. New York: Cambridge University Press, 2006. [CrossRef] [Google Scholar]
- Gruber P M. Convex and Discrete Geometry[M]. Berlin:Springer-Verlag, 2007. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.