Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 2, April 2023
Page(s) 99 - 105
DOI https://doi.org/10.1051/wujns/2023282099
Published online 23 May 2023
  1. Barrow J D, Parsons P. Inflationary models with logarithmic potentials [J]. Physical Review D, 1995, 52(10): 576-587. [Google Scholar]
  2. Bialynicki-Birula I, Mycielski J. Nonlinear wave mechanics [J]. Annals of Physics, 1976, 100(1-2): 62-93. [CrossRef] [MathSciNet] [Google Scholar]
  3. Bialynicki-Birula I, Mycielski J. Gaussons: Solitons of the logarithmic Schrödinger equation [J]. Physica Scripta, 1979, 20(3-4): 539-544. [Google Scholar]
  4. Deng X M, Zhou J. Extinction and non-extinction of solutions to a fast diffusion p-Laplace equation with logarithmic non-linearity [J]. Journal of Dynamical and Control Systems, 2022, 28(4): 757-769. [CrossRef] [MathSciNet] [Google Scholar]
  5. Ding H, Zhou J. Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity [J]. Applied Mathematics & Optimization, 2021, 83(3): 1651-1707. [Google Scholar]
  6. Enqvist K, McDonald J. Q-balls and baryogenesis in the MSSM [J]. Physics Letters B, 1998, 425(3-4): 309-321. [NASA ADS] [CrossRef] [Google Scholar]
  7. Han Y Z, Liu X. Global existence and extinction of solutions to a fast diffusion p-Laplace equation with special medium void [J]. Rocky Mountain Journal of Mathematics, 2021, 51(3): 869-881. [MathSciNet] [Google Scholar]
  8. Liu D M, Liu C Y. On the global existence and extinction behavior for a polytropic filtration equation with variable coefficients [J]. Electronic Research Archive, 2022, 30(2): 425-439. [CrossRef] [MathSciNet] [Google Scholar]
  9. Shang H F. Doubly nonlinear parabolic equations with measure data [J]. Annali di Matematica Pura ed Applicata, 2013, 192(2): 273-296. [CrossRef] [MathSciNet] [Google Scholar]
  10. Tian Y, Mu C L. Extinction and non-extinction for a p-Laplacian equation with nonlinear source [J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(8): 2422-2431. [CrossRef] [MathSciNet] [Google Scholar]
  11. Li H L, Wu Z Q, Yin J X, et al. Nonlinear Diffusion Equations [M]. Singapore: World Scientific, 2001. [Google Scholar]
  12. Xu X H, Cheng T Z. Extinction and decay estimates of solutions for a non-Newton polytropic filtration system [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43(3): 2399-2415. [Google Scholar]
  13. Yin J X, Jin C H. Non-extinction and critical exponent for a polytropic filtration equation [J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(1-2): 347-357. [CrossRef] [Google Scholar]
  14. Jin C H, Yin J H, Ke Y Y. Critical extinction and blow-up exponents for fast diffusive polytropic filtration equation with sources [J]. Proceedings of the Edinburgh Mathematical Society, 2009, 52(2): 419-444. [Google Scholar]
  15. Zhou J, Mu C L. Critical blow-up and extinction exponents for non-Newton polytropic filtration equation with source [J]. Bulletin of the Korean Mathematical Society, 2009, 46(6): 1159-1173. [Google Scholar]
  16. Le C N, Le X T. Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity [J]. Acta Applicandae Mathematicae, 2017, 151(1): 149-169. [Google Scholar]
  17. Le N C, Le T X. Existence and nonexistence of global solutions for doubly nonlinear diffusion equations with logarithmic nonlinearity [J]. Electronic Journal of Qualitative Theory of Differential Equations, 2018, 67: 1-25. [Google Scholar]
  18. Liu W J, Wu B. A note on extinction for fast diffusive p-Laplacian with sources [J]. Mathematical Methods in the Applied Sciences, 2008, 31(12): 1383-1386. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  19. Guo B, Gao W J. Non-extinction of solutions to a fast diffusive p-Laplace equation with Neumann boundary conditions [J]. Journal of Mathematical Analysis and Applications, 2015, 422(2): 1527-1531. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.