Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 2, April 2023
Page(s) 106 - 116
DOI https://doi.org/10.1051/wujns/2023282106
Published online 23 May 2023
  1. Hilger S. Analysis on measure chains — A unified approach to continuous and discrete calculus [J]. Results in Mathematics, 1990, 18: 18-56. [CrossRef] [Google Scholar]
  2. Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications [M]. Boston: Birkhäuser, 2001. [Google Scholar]
  3. Bohner M, Georgiev S G. Multivariable Dynamic Calculus on Time Scales [M]. Berlin: Springer Verlag, 2016. [CrossRef] [Google Scholar]
  4. Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales [M]. Boston: Birkhäuser, 2003. [CrossRef] [Google Scholar]
  5. Agarwal R, Bohner M, O'Regan D, et al. Dynamic equations on time scales: A survey [J]. Journal of Computational and Applied Mathematics, 2002, 141(1-2): 1-26. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. Atici F M, Biles D C, Lebedinsky A. An application of time scales to economics [J]. Mathematical and Computer Modelling, 2006, 43(7-8): 718-726. [Google Scholar]
  7. Bohner M, Fan M, Zhang J. Periodicity of scalar dynamic equations and applications to population models [J]. Journal of Mathematical Analysis and Applications, 2007, 330(1): 1-9. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. Ferreira R A C, Torres D F M. Remarks on the calculus of variations on time scales [J]. International Journal of Ecological Economics and Statistics, 2007, 9(F07): 65-73. [Google Scholar]
  9. Benkhettou N, Brito da Cruz A M C, Torres D F M. A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration [J]. Signal Processing, 2015, 107: 230-237. [CrossRef] [Google Scholar]
  10. Dryl M, Torres D F M. Direct and inverse variational problems on time scales: A survey [C]// Modeling, Dynamics, Optimization and Bioeconomics II. Proceedings in Mathematics and Statistics. Berlin: Springer-Verlag, 2017, 195: 223-265. [MathSciNet] [Google Scholar]
  11. Bohner M. Calculus of variations on time scales [J]. Dynamic Systems and Application, 2004, 13: 339-349. [Google Scholar]
  12. Martins N, Torres D F M. Calculus of variations on time scales with nabla derivatives [J]. Nonlinear Analysis: Theory, Methods and Application, 2019, 71(12): e763-e773. [Google Scholar]
  13. Jin S X, Zhang Y. Generalized Chaplygin equations for nonholonomic systems on time scales [J]. Chinese Physics B, 2018, 27(2): 020502. [Google Scholar]
  14. Hilscher R, Zeidan V. First order conditions for generalized variational problems over time scales [J]. Computers and Mathematics with Applications, 2011, 62(9): 3490-3503. [CrossRef] [MathSciNet] [Google Scholar]
  15. Girejko E, Malinowska A B, Torres D F M. Delta-nabla optimal control problems [J]. Journal of Vibration and Control, 2011, 17(11): 1634-1643. [Google Scholar]
  16. Bastos N R O, Ferreira R A C, Torres D F M. Discrete-time fractional variational problems [J]. Signal Processing, 2011, 91(3): 513-524. [CrossRef] [Google Scholar]
  17. Mekhalfi K, Torres D F M. Generalized fractional operators on time scales with application to dynamic equations [J]. The European Physical Journal Special Topics, 2017, 226(16-18): 3489-3499. [NASA ADS] [CrossRef] [Google Scholar]
  18. Tian X, Zhang Y. Fractional time-scales Noether theorem with Caputo Formula derivatives for Hamiltonian systems [J]. Applied Mathematics and Computation, 2021, 393: 125753. [Google Scholar]
  19. Bartosiewicz Z, Torres D F M. Noether's theorem on time scales [J]. Journal of Mathematical Analysis and Applications, 2008, 342(2): 1220-1226. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  20. Cai P P, Fu J L, Guo Y X. Noether symmetries of the nonconservative and nonholonomic systems on time scales [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(4): 1017-1028. [CrossRef] [Google Scholar]
  21. Song C J, Zhang Y. Noether theorem for Birkhoffian systems on time scales [J]. Journal of Mathematical Physics, 2015, 56(10): 102701. [CrossRef] [MathSciNet] [Google Scholar]
  22. Anerot B, Cresson J, Belgacem K H, et al. Noether's-type theorems on time scales [J]. Journal of Mathematical Physics, 2020, 61(11): 113502. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. Zhai X H, Zhang Y. Lie symmetry analysis on time scales and its application on mechanical systems [J]. Journal of Vibration and Control, 2019, 25(3): 581-592. [CrossRef] [MathSciNet] [Google Scholar]
  24. Zhang Y. Adiabatic invariants and Lie symmetries on time scales for nonholonomic systems of non-Chetaev type [J]. Acta Mechamica, 2020, 128(1): 293-303. [CrossRef] [Google Scholar]
  25. Zhang Y, Tian X, Zhai X H, et al. Hojman conserved quantity for time scales Lagrange systems [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2814-2822(Ch). [Google Scholar]
  26. Zhai X H, Zhang Y. Mei symmetry for time-scales Euler-Lagrange equations and its relation to Noether symmetry [J]. Acta Physica Polonica A, 2019, 136(3): 439-443. [CrossRef] [MathSciNet] [Google Scholar]
  27. Zhang Y. Mei's symmetry theorems for time scales nonshifed mechanical systems [J]. Theoretical and Applied Mechanics Letters, 2021, 11(5): 100286. [CrossRef] [Google Scholar]
  28. Zhai X H, Zhang Y. Hamilton-Jacobi method for mechanical systems on time scales [J]. Complexity, 2018, 2018: 8070658. [Google Scholar]
  29. Zhang Y, Zhai X H. Generalized canonical transformation for second-order Birkhoffian systems on time scales [J]. Theoretical and Applied Mechanics Letters, 2019, 9(6): 353-357. [CrossRef] [Google Scholar]
  30. Zhai X H, Zhang Y. Noether theorem for non-conservative systems with time delay on time scales [J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 52: 32-43. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  31. Tian X, Zhang Y. Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales [J]. Acta Mechanica, 2018, 229(9): 3601-3611. [CrossRef] [MathSciNet] [Google Scholar]
  32. Ferreira R A C, Malinowska A B, Torres D F M. Optimality conditions for the calculus of variations with higher-order delta derivatives [J]. Applied Mathematics Letters, 2011, 24(1): 87-92. [Google Scholar]
  33. Bourdin L. Nonshifted calculus of variations on time scales with Formula Formula [J]. Journal of Mathematical Analysis and Applications, 2014, 411(2): 543-554. [CrossRef] [MathSciNet] [Google Scholar]
  34. Cresson J, Malinowska A B, Torres D F M. Time scale differential, integral, and variational embeddings of Lagrangian systems [J]. Computers & Mathematics with Applications, 2012, 64(7): 2294-2301. [Google Scholar]
  35. Song C J, Cheng Y. Noether's theorems for nonshifted dynamic systems on time scales [J]. Applied Mathematics and Computation, 2020, 374: 125086. [CrossRef] [MathSciNet] [Google Scholar]
  36. Zhang Y. Nonshifted dynamics of constrained systems on time scales under Lagrange framework and its Noether's theorem [J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106214. [Google Scholar]
  37. Zhang Y. Mei's symmetry theorems for non-migrated Birkhoffian systems on a time scale [J]. Acta Physica Sinica, 2021, 70 (24): 244501(Ch). [CrossRef] [Google Scholar]
  38. Mei F X. Analytical Mechanics II [M]. Beijing: Beijing Institute of Technology Press, 2013. [Google Scholar]
  39. José J V, Saletan E J. Classical Dynamics: A Contemporary Approach [M]. Cambridge: Cambridge University Press, 1998. [Google Scholar]
  40. Mei F X, Zhang Y F, Shang M. Lie symmetries and conserved quantities of Birkhoffian systems [J]. Mechanics Research Communications, 1999, 26(1): 7-12. [CrossRef] [MathSciNet] [Google Scholar]
  41. Fu J L, Fu L P, Chen B Y, et al. Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives [J]. Physics Letters A, 2016, 380(1-2): 15-21. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  42. Fu J L, Chen L Q. Form invariance, Noether symmetry and Lie symmetry of Hamiltonian systems in phase space [J]. Mechanics Research Communications, 2004, 31(1): 9-19. [CrossRef] [MathSciNet] [Google Scholar]
  43. Chen X W, Mei F X. Constrained mechanical systems and gradient systems with strong Lyapunov functions [J]. Mechanics Research Communications, 2016, 76: 91-95. [Google Scholar]
  44. Zhang Y. Noether's symmetry and conserved quantity for a time-delayed Hamiltonian system of Herglotz type [J]. Royal Society Open Science, 2018, 5(10): 180208. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  45. Mei F X, Wu H B, Li Y M. A Brief History of Analytical Mechanics [M]. Beijing: Science Press, 2019(Ch). [Google Scholar]
  46. Santilli R M. Foundations of Theoretical Mechanics II [M]. New York: Springer-Verlag, 1983. [CrossRef] [MathSciNet] [Google Scholar]
  47. Mei F X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999(Ch). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.