Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 5, October 2023
|
|
---|---|---|
Page(s) | 369 - 372 | |
DOI | https://doi.org/10.1051/wujns/2023285369 | |
Published online | 10 November 2023 |
- Ireland K, Rosen M. A Classical Introduction to Modern Number Theory[M]. 2nd Ed. New York: Springer-Verlag, 1990. [CrossRef] [MathSciNet] [Google Scholar]
- Lidl R, Niederreiter H. Finite Fields[M]. Cambridge: Cambridge University Press, 1997. [Google Scholar]
- Chowla S, Cowles J, Cowles M. On the number of zeros of diagonal cubic forms[J]. J Number Theory, 1977, 9(4): 502-506. [CrossRef] [MathSciNet] [Google Scholar]
-
Chowla S, Cowles J, Cowles M. The number of zeros of
in certain finite fields[J]. J Reine Angew Math, 1978, 299: 406-410. [MathSciNet] [Google Scholar]
- Ge W X, Li W P, Wang T Z. The number of solutions of diagonal cubic equations over finite fields[J]. Finite Fields and Their Applications, 2022, 80: 102008. [CrossRef] [Google Scholar]
- Hong S F, Zhu C X. On the number of zeros of diagonal cubic forms over finite fields[J]. Forum Math, 2021, 33: 697-708. [CrossRef] [MathSciNet] [Google Scholar]
- Hu S N, Feng R Q. The number of solutions of cubic diagonal equations over finite fields[J]. AIMS Math, 2023, 8(3): 6375-6388. [CrossRef] [MathSciNet] [Google Scholar]
- Huang H A, Gao W, Cao W. Remarks on the number of rational points on a class of hypersurfaces over finite fields[J]. Algebra Colloq, 2018, 25(3): 533-540. [CrossRef] [MathSciNet] [Google Scholar]
- Myerson G. On the number of zeros of diagonal cubic forms[J]. J Number Theory, 1979, 11(1): 95-99. [CrossRef] [MathSciNet] [Google Scholar]
- Weil A. Numbers of solutions of equations in finite fields[J]. Bull Amer Math Soc, 1949, 55(5): 497-508. [CrossRef] [MathSciNet] [Google Scholar]
- Wolfmann J. The number of solutions of certain diagonal equations over finite fields[J]. J Number Theory, 1992, 42(3): 247-257. [CrossRef] [MathSciNet] [Google Scholar]
-
Zhang W, Hu J. The number of solutions of the diagonal cubic congruence equation mod
[J]. Math Rep (Bucur.), 2018, 20: 73-80. [MathSciNet] [Google Scholar]
- Zhao J Y, Zhao Y J. On the number of solutions of two-variable diagonal quartic equations over finite fields[J]. AIMS Math, 2020, 5(4): 2979-2991. [CrossRef] [MathSciNet] [Google Scholar]
- Zhao J Y, Hong S F, Zhu C X. The number of rational points of certain quartic diagonal hypersurfaces over finite fields[J]. AIMS Math, 2020, 5(3): 2710-2731. [CrossRef] [MathSciNet] [Google Scholar]
- Berndt B, Evans R, Williams K. Gauss and Jacobi Sums[M]. New York: Wiley, 1998. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.