Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 5, October 2023
Page(s) 411 - 420
DOI https://doi.org/10.1051/wujns/2023285411
Published online 10 November 2023
  1. Roos H G, Stynes M, Tobiska L. Numerical Methods for Singularly Perturbed Differential Equations[M]. Berlin: Springer-Verlag, 1996. [CrossRef] [Google Scholar]
  2. Stynes M, Stynes D. Convection-diffusion Problems: An Introduction to Their Analysis and Numerical Solution[M]. Halifax: American Mathematical Society, 2018. [Google Scholar]
  3. Miller J J H, Riordan E O, Shishkin G I. Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions[M]. Singapore: World Scientific, 1996. [CrossRef] [Google Scholar]
  4. Reed W H, Hill T R. Triangular Mesh Methods for the Neutron Transport Equation[M]. Los Alamos: Los Alamos Scientific Laboratory, 1973. [Google Scholar]
  5. Cockburn B. Discontinuous Galerkin methods for convection-dominated problems, in high-order methods for computational physics[C]//Lecture Notes in Computational Science and Engineering. Berlin: Springer-Verlag, 1999, 9: 69-224. [Google Scholar]
  6. Xie Z Q, Zhang Z Z, Zhang Z M. A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems[J]. J Comput Math, 2009, 27(2-3): 280-298. [MathSciNet] [Google Scholar]
  7. Zhu H, Zhang Z. Convergence analysis of the LDG method applied to singularly perturbed problems[J]. Numerical Methods Partial Differential Equation, 2013, 29(2): 396-421. [CrossRef] [Google Scholar]
  8. Zhu H, Zhang Z. Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer[J]. Math Comp, 2014, 286(83): 635-663. [Google Scholar]
  9. Cheng Y, Song C J, Mei Y J. Local discontinuous Galerkin method for time-dependent singularly perturbed semilinear reaction-diffusion problems[J]. Comput Methods Appl Math, 2021, 21(1): 31-52. [CrossRef] [MathSciNet] [Google Scholar]
  10. Cheng Y, Zhang Q, Wang H J. Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for two-dimensional singularly perturbed problem[J]. Int Numer Anal Mod, 2018, 15(6): 785-810. [Google Scholar]
  11. Cheng Y. On the local discontinuous Galerkin method for singularly perturbed problem with two parameters[J]. J Comput Appl Math, 2021, 392: 113485. [CrossRef] [Google Scholar]
  12. Cheng Y, Mei Y J, Roos H G. The local discontinuous Galerkin method on layer-adapted meshes for time-dependent singularly perturbed convection-diffusion problems[J]. Comput Math Appl, 2022, 117: 245-256. [MathSciNet] [Google Scholar]
  13. Linß T. Layer-adapted meshes for convection-diffusion problems[J]. Comput Methods Appl Mech Engrg, 2003, 192: 9-10. [Google Scholar]
  14. Roos H G. Layer-adapted grids for singular perturbation problems[J]. Z Angew Math Mech, 1998, 78: 291-309. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  15. Xie Z Q, Zhang Z M. Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problems in 1-D[J]. Math Comp, 2010, 79(269): 35-45. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. Ciarlet P. The Finite Element Method for Elliptic Problem[M]. Amsterdam: North-Holland, 1975. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.