Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 5, October 2023
Page(s) 399 - 410
DOI https://doi.org/10.1051/wujns/2023285399
Published online 10 November 2023
  1. Mao X , Szpruch L. Strong convergence rates for backward Euler-Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients[J]. Stochastics: An International Journal of Probability and Stochastic Processes, 2013, 85(1): 144-171. [CrossRef] [MathSciNet] [Google Scholar]
  2. Zhou S B, Jin H. Numerical solution to highly nonlinear neutral-type stochastic differential equation[J]. Applied Numerical Mathematics, 2019, 140: 48-75. [CrossRef] [MathSciNet] [Google Scholar]
  3. Zhou S B, Jin H. Implicit numerical solutions to neutral-type stochastic systems with superlinearly growing coefficients[J]. Journal of Computational and Applied Mathematics, 2019, 350: 423-441. [CrossRef] [MathSciNet] [Google Scholar]
  4. Hutzenthaler M, Jentzen A, Kloeden P E. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467(2130): 1563-1576. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. Liu W, Mao X R. Strong convergence of the stopped Euler-Maruyama method for nonlinear stochastic differential equations[J]. Applied Mathematics and Computation, 2013, 223: 389-400. [CrossRef] [MathSciNet] [Google Scholar]
  6. Sabanis S. A note on tamed Euler approximations[J]. Electronic Communications in Probability, 2013, 18(1): 1-10. [CrossRef] [MathSciNet] [Google Scholar]
  7. Wang X J, Gan S Q. The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients[J]. Journal of Difference Equations and Applications, 2013, 19(3): 466-490. [CrossRef] [MathSciNet] [Google Scholar]
  8. Mao X R. The truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2015, 290: 370-384. [CrossRef] [MathSciNet] [Google Scholar]
  9. Mao X R. Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2016, 296: 362-375. [CrossRef] [MathSciNet] [Google Scholar]
  10. Lan G, Xia F. Strong convergence rates of modified truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2018, 334: 1-17. [CrossRef] [MathSciNet] [Google Scholar]
  11. Liu W, Mao X R, Tang J W, et al. Truncated Euler-Maruyama method for classical and time-changed non-autonomous stochastic differential equationsFormula . Applied Numerical Mathematics, 2020, 153: 66-81. [CrossRef] [MathSciNet] [Google Scholar]
  12. Yang H, Wu F K, Kloeden P E, et al. The truncated Euler-Maruyama method for stochastic differential equations with Hölder diffusion coefficients[J]. Journal of Computational and Applied Mathematics, 2020, 366: 112379. [CrossRef] [MathSciNet] [Google Scholar]
  13. Mao X R, Wei F Y, Wiriyakraikul T. Positivity preserving truncated Euler-Maruyama Method for stochastic Lotka-Volterra competition model[J]. Journal of Computational and Applied Mathematics, 2021, 394: 113566. [CrossRef] [Google Scholar]
  14. Yang H F, Huang J H. Convergence and stability of modified partially truncated Euler-Maruyama method for nonlinear stochastic differential equations with Hölder continuous diffusion coefficient[J]. Journal of Computational and Applied Mathematics, 2022, 404:113895. [CrossRef] [MathSciNet] [Google Scholar]
  15. Zhou S B. Strong convergence and stability of backward Euler-Maruyama scheme for highly nonlinear hybrid stochastic differential delay equation[J]. Calcolo, 2015, 52(4): 445-473. [CrossRef] [MathSciNet] [Google Scholar]
  16. Zhou S B, Jin H. Strong convergence of implicit numerical methods for nonlinear stochastic functional differential equations[J]. Journal of Computational and Applied Mathematics, 2017, 324: 241-257. [CrossRef] [MathSciNet] [Google Scholar]
  17. Zhou S B, Hu C Z. Numerical approximation of stochastic differential delay equation with coefficients of polynomial growth[J]. Calcolo, 2017, 54(1): 1-22. [CrossRef] [MathSciNet] [Google Scholar]
  18. Guo Q, Mao X R, Yue R X. The truncated Euler-Maruyama method for stochastic differential delay equations[J]. Numerical Algorithms, 2018, 78(2): 599-624. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.