Open Access
Wuhan Univ. J. Nat. Sci.
Volume 28, Number 5, October 2023
Page(s) 392 - 398
Published online 10 November 2023
  1. Weyl H. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1): 373-392. [CrossRef] [Google Scholar]
  2. Harte R, Lee W Y. Another note on Weyl's theorem[J]. Transactions of the American Mathematical Society, 1997, 349(5): 2115-2124. [CrossRef] [MathSciNet] [Google Scholar]
  3. Rakočević V. Operators obeying a-Weyl's theorem[J]. Revue Roumaine des Mathematiques Pures et Appliquees, 1989, 34(10): 915-919. [Google Scholar]
  4. Rakočević V. On a class of operators[J]. Mathematicki Vesnik, 1985, 37(4): 423-426. [Google Scholar]
  5. Li C G, Zhu S, Feng Y L. Weyl's theorem for functions of operators and approximation[J]. Integral Equations and Operator Theory, 2010, 67(4): 481-497. [CrossRef] [MathSciNet] [Google Scholar]
  6. Sun C H, Cao X H. Criteria for the property (UWE) and the a-Weyl theorem[J]. Functional Analysis and Its Applications, 2022, 56(3):76-88. [Google Scholar]
  7. Cao X H, Guo M Z, Meng B. Weyl's spectra and Weyl's theorem[J]. Journal of Mathematical Analysis and Applications, 2003, 288(2): 758-767. [CrossRef] [MathSciNet] [Google Scholar]
  8. Saphar P. Contribution à l'étude des applications linéaires dans un espace de Banach[J]. Bulletin de la Societe Mathematique de France, 1964, 92: 363-384. [CrossRef] [MathSciNet] [Google Scholar]
  9. Harte R E. On Kato non-singularity[J]. Studia Mathematica, 1996, 117: 107-114. [CrossRef] [MathSciNet] [Google Scholar]
  10. Goldberg S. Unbounded Linear Operators[M]. New York: McGrawHill, 1966. [Google Scholar]
  11. Grabiner S. Uniform ascent and descent of bounded operaters[J]. Journal of Mathematical Society of Japan, 1982, 34(2): 317-337. [MathSciNet] [Google Scholar]
  12. Taylor A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163(1): 18-49. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.