Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 1, February 2024
Page(s) 29 - 37
DOI https://doi.org/10.1051/wujns/2024291029
Published online 15 March 2024
  1. Karmarkar N K. A new polynomial-time algorithm for linear programming[J]. Combinatorica, 1984, 4: 373-395. [CrossRef] [MathSciNet] [Google Scholar]
  2. Roos C, Terlaky T, J-Ph Vial. Theory and Algorithms for Linear Optimization: An Interior Approach[M]. Chichester: John Wiley, Sons, 1997. [Google Scholar]
  3. Yang Y G. Arc-Search Techniques for Interior-Point Methods[M]. Boca Raton: CRC Press, 2020. [CrossRef] [Google Scholar]
  4. Peng J M, Roos C. Terlaky T. Self-regular functions and new search directions for linear and semi-definite optimization[J]. Math Program, 2002, 93(1): 129-171. [CrossRef] [MathSciNet] [Google Scholar]
  5. Bai Y Q, Ghami M EL, Roos C. A comparative study of kernel functions for primal-dual interior-point algorithm in linear optimization[J]. SIAM J Optim, 2004, 15(1):101-128. [CrossRef] [MathSciNet] [Google Scholar]
  6. Lesaja G, Wang G Q, Zhu D T. Interior-point methods for Cartesian Formula -linear complementarity problems over symmetric cones based on the eligible kernel functions[J]. Optim Method Softw, 2012, 27: 827-843. [CrossRef] [MathSciNet] [Google Scholar]
  7. Cai X Z, Li L, El Ghami M, et al. A new parametric kernel function yielding the best known iteration bounds of interior-point methods for the Cartesian Formula -LCP over symmetric cones[J]. Pac J Optim, 2017, 13(4): 547-570. [MathSciNet] [Google Scholar]
  8. Li L, Tao J Y, El Ghami M, et al. A new parametric kernel function with a trigonometric barrier term for Formula -linear complementarity problems[J]. Pac J Optim, 2017, 13(2): 255-278. [MathSciNet] [Google Scholar]
  9. Wang G Q, Yu C J, Teo K L. A full-Newton step feasible interior-point algorithm for Formula -linear complementarity problems[J]. J Glob Optim, 2014, 59(1): 81-99. [CrossRef] [Google Scholar]
  10. Darvay Z. New interior point algorithms in linear programming[J]. Adv Model Optim, 2003, 5(1): 51-92. [Google Scholar]
  11. Darvay Z, Rigo P R. New interior-point algorithm for symmetric optimization based on a positive-asymptotic barrier function[J]. Numer Func Anal Opt, 2018, 39(15): 1705-1726. [CrossRef] [MathSciNet] [Google Scholar]
  12. Zhang M W, Huang K, Li M M, et al. A new full-Newton step interior-point method for Formula -LCP based on a positive-asymptotic kernel function[J]. J Appl Math Comput, 2020, 64: 313-330. [CrossRef] [MathSciNet] [Google Scholar]
  13. Geng J, Zhang M W, Pang J J. A full-Newton step feasible IPM for semidefinite optimization based on a kernel function with linear growth term[J]. Wuhan University Journal of Natural Sciences, 2020, 25 (6): 501-509. [Google Scholar]
  14. Zhang M W, Geng J, Wu S. A new infeasible interior point algorithm with full-Newton steps based for linear programming based on kernel function [J]. J Nonlinear Funct Anal, 2021: Article ID 31. [Google Scholar]
  15. Potra F A. Weighted complementarity problems: A new paradigm for computing equilibria[J]. SIAM J Optim, 2012, 22(4): 1634-1654. [CrossRef] [MathSciNet] [Google Scholar]
  16. Potra F A. Sufficient weighted complementarity problems[J]. Comp Appl Math, 2016, 64: 467-488. [Google Scholar]
  17. Asadi A, Darvay Z, Lesaja G, et al. A full-Newton step interior-point method for monotone weighted linear complementarity problems[J]. J Optim Theory Appl, 2020, 186: 864-878. [CrossRef] [MathSciNet] [Google Scholar]
  18. Chi X N, Zhang R J, Liu S Y. A new full-Newton step feasible interior-point algorithm for linear weighted complementarity problem[J]. Appl Math, 2021, 34(2): 304-311. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.