Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 1, February 2024
|
|
---|---|---|
Page(s) | 21 - 28 | |
DOI | https://doi.org/10.1051/wujns/2024291021 | |
Published online | 15 March 2024 |
- Tang Q H. Asymptotics for the finite time ruin probability in the renewal model with consistent variation[J]. Stochastic Models, 2004, 20(3): 281-297. [CrossRef] [MathSciNet] [Google Scholar]
- Leipus R, Šiaulys J. Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes[J]. Insurance: Mathematics and Economics, 2007, 40(3): 498-508. [CrossRef] [MathSciNet] [Google Scholar]
- Leipus R, Šiaulys J. Asymptotic behaviour of the finite-time ruin probability in renewal risk models[J]. Applied Stochastic Models in Business and Industry, 2009, 25(3): 309-321. [CrossRef] [MathSciNet] [Google Scholar]
- Kočetova J, Leipus R, Šiaulys J. A property of the renewal counting process with application to the finite-time ruin probability[J]. Lithuanian Mathematical Journal, 2009, 49(1): 55-61. [CrossRef] [MathSciNet] [Google Scholar]
- Yang Y, Leipus R, Šiaulys J, et al. Uniform estimates for the finite-time ruin probability in the dependent renewal risk model[J]. Journal of Mathematical Analysis and Applications, 2011, 383(1): 215-225. [CrossRef] [MathSciNet] [Google Scholar]
- Wang Y B, Cui Z L, Wang K Y, et al. Uniform asymptotics of the finite-time ruin probability for all times[J]. Journal of Mathematical Analysis and Applications, 2012, 390(1): 208-223. [CrossRef] [MathSciNet] [Google Scholar]
- Chen Y Q, Yuen K C, Ng K W. Asymptotics for the ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims[J]. Applied Stochastic Models in Business and Industry, 2011, 27(3): 290-300. [CrossRef] [MathSciNet] [Google Scholar]
- Chen Y, Wang Y B, Wang K Y. Asymptotic results for ruin probability of a two-dimensional renewal risk model[J]. Stochastic Analysis and Applications, 2013, 31(1): 80-91. [CrossRef] [MathSciNet] [Google Scholar]
- Stabile G, Torrisi G L. Risk processes with non-stationary Hawkes claims arrivals[J]. Methodology and Computing in Applied Probability, 2010, 12(3): 415-429. [CrossRef] [MathSciNet] [Google Scholar]
- Fu K A, Li J E. Asymptotic ruin probabilities for a bidimensional risk model with heavy-tailed claims and non-stationary arrivals[J]. Communications in Statistics‒Theory and Methods, 2019, 48(24): 6169-6178. [CrossRef] [MathSciNet] [Google Scholar]
- Fu K A, Liu Y. Ruin probabilities for a multidimensional risk model with non-stationary arrivals and subexponential claims[J]. Probability in the Engineering and Informational Sciences, 2022, 36(3): 799-811. [CrossRef] [MathSciNet] [Google Scholar]
- Dembo A, Zeitouni O. Large Deviations Techniques and Applications[M]. New York: Springer-Verlag, 1998. [CrossRef] [Google Scholar]
- Bordenave C, Torrisi G L. Large deviations of Poisson cluster processes[J]. Stochastic Models, 2007, 23(4): 593-625. [CrossRef] [MathSciNet] [Google Scholar]
- Embrechts P, Klüppelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance[M]. New York: Springer-Verlag, 1997. [CrossRef] [Google Scholar]
- Korshunov D A. Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution[J]. Theory of Probability & Its Applications, 2002, 46(2): 355-366. [Google Scholar]
- Kaas R, Tang Q H. Note on the tail behavior of random walk maxima with heavy tails and negative drift[J]. North American Actuarial Journal, 2003, 7(3): 57-61. [CrossRef] [MathSciNet] [Google Scholar]
- Lefevere R, Mariani M, Zambotti L. Large deviations for renewal processes[J]. Stochastic Processes and Their Applications, 2011, 121(10): 2243-2271. [CrossRef] [MathSciNet] [Google Scholar]
- Macci C, Pacchiarotti B. Large deviations for a class of counting processes and some statistical applications[J]. Statistics & Probability Letters, 2015, 104: 36-48. [CrossRef] [MathSciNet] [Google Scholar]
- Jiang H, Li S M, Wang S C. Deviation inequalities, moderate deviation principles for certain Gaussian functionals, and their applications in parameter estimation[J]. Stochastic Analysis and Applications, 2017, 35(4): 615-632. [CrossRef] [MathSciNet] [Google Scholar]
- Foss S, Korshunov D, Zachary S. An Introduction to Heavy-Tailed and Subexponential Distributions[M]. New York: Springer-Verlag, 2013. [CrossRef] [Google Scholar]
- Li J H, Liu Z M, Tang Q H. On the ruin probabilities of a bidimensional perturbed risk model[J]. Insurance: Mathematics and Economics, 2007, 41(1): 185-195. [CrossRef] [MathSciNet] [Google Scholar]
- Lu D W, Zhang B. Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims[J]. Statistics & Probability Letters, 2016, 114: 20-29. [CrossRef] [MathSciNet] [Google Scholar]
- Konstantinides D G, Li J Z. Asymptotic ruin probabilities for a multidimensional renewal risk model with multivariate regularly varying claims[J]. Insurance: Mathematics and Economics, 2016, 69: 38-44. [CrossRef] [MathSciNet] [Google Scholar]
- Li J Z, Yang H Z. Asymptotic ruin probabilities for a bidimensional renewal risk model with constant interest rate and dependent claims[J]. Journal of Mathematical Analysis and Applications, 2015, 426(1): 247-266. [CrossRef] [MathSciNet] [Google Scholar]
- Li J Z. A revisit to asymptotic ruin probabilities for a bidimensional renewal risk model[J]. Statistics & Probability Letters, 2018, 140: 23-32. [CrossRef] [MathSciNet] [Google Scholar]
- Yang H Z, Li J Z. Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims[J]. Insurance: Mathematics and Economics, 2014, 58: 185-192. [CrossRef] [MathSciNet] [Google Scholar]
- Cheng D Y, Yu C J. Uniform asymptotics for the ruin probabilities in a bidimensional renewal risk model with strongly subexponential claims[J]. Stochastics, 2019, 91(5): 643-656. [CrossRef] [MathSciNet] [Google Scholar]
- Cheng D Y, Yang Y, Wang X Z. Asymptotic finite-time ruin probabilities in a dependent bidimensional renewal risk model with subexponential claims[J]. Japan Journal of Industrial and Applied Mathematics, 2020, 37(3): 657-675. [CrossRef] [MathSciNet] [Google Scholar]
- Yang Y, Wang K Y, Liu J J, et al. Asymptotics for a bidimensional risk model with two geometric Lévy price processes[J]. Journal of Industrial & Management Optimization, 2019, 15(2): 481-505. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.