Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 2, April 2024
|
|
---|---|---|
Page(s) | 95 - 105 | |
DOI | https://doi.org/10.1051/wujns/2024292095 | |
Published online | 14 May 2024 |
- Cavalcanti M M, Domingos Cavalcanti V N, Lasiecka I. Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction[J]. Journal of Differential Equations, 2007, 236(2): 407-459. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Chueshov I, Eller M, Lasiecka I. On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation[J]. Communications in Partial Differential Equations, 2002, 27(9/10): 1901-1951. [CrossRef] [MathSciNet] [Google Scholar]
- Hintermann T. Evolution equations with dynamic boundary conditions[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1989, 113(1/2): 43-60. [CrossRef] [MathSciNet] [Google Scholar]
- Vázquez J L, Vitillaro E. Heat equation with dynamical boundary conditions of reactive-diffusive type[J]. Journal of Differential Equations, 2011, 250(4): 2143-2161. [CrossRef] [MathSciNet] [Google Scholar]
- Vitillaro E. On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and source[J]. Archive for Rational Mechanics and Analysis, 2017, 223(3): 1183-1237. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Yang X, Zhou Z F. Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition[J]. Journal of Differential Equations, 2016, 261(5): 2738-2783. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Xue Y Z. Lower bounds of blow up time for a class of slow reaction diffusion equations with inner absorption terms[J].Wuhan University Journal of Natural Sciences, 2023, 28(5): 373-378. [CrossRef] [EDP Sciences] [Google Scholar]
- Liu D M, Chen A. Global existence and extinction behaviour for a doubly nonlinear parabolic equation with logarithmic nonlinearity[J].Wuhan University Journal of Natural Sciences, 2023, 28(2): 99-105. [CrossRef] [EDP Sciences] [Google Scholar]
- Vitillaro E, Fiscella A. Local Hadamard well: Posedness and blow up for reaction: Diffusion equations with nonlinear dynamical boundary conditions[J]. Discrete and Continuous Dynamical Systems, 2013, 33(11/12): 5015-5047. [CrossRef] [MathSciNet] [Google Scholar]
- Sun F L, Wang Y T, Yin H J. Blow-up problems for a parabolic equation coupled with superlinear source and local linear boundary dissipation[J]. Journal of Mathematical Analysis and Applications, 2022, 514(2): 126327. [CrossRef] [Google Scholar]
- Huo W T, Fang Z B. Life span bounds for reaction-diffusion equation with a space-time integral source term[J]. Zeitschrift Fiir Angewandte Mathematik Und Physik, 2023, 74(4): 128. [NASA ADS] [CrossRef] [Google Scholar]
- Liu D M, Mu C L, Xin Q. Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation[J]. Acta Mathematica Scientia, 2012, 32(3): 1206-1212. [CrossRef] [MathSciNet] [Google Scholar]
- Ciarlet P G. Linear and Nonlinear Functional Analysis with Applications[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2013. [CrossRef] [Google Scholar]
- Levine H A. Some nonexistence and instability theorems for solutions of formally parabolic equations of the form [J]. Archive for Rational Mechanics and Analysis, 1973, 51(5): 371-386. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Dickstein F, Mizoguchi N, Souplet P, et al. Transversality of stable and Nehari manifolds for a semilinear heat equation[J]. Calculus of Variations and Partial Differential Equations, 2011, 42(3): 547-562. [CrossRef] [MathSciNet] [Google Scholar]
- Willem M. Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications[M]. Boston: Birkhäuser Boston Inc, 1996. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.